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Exploiting Trusted Execution Environments and
Distributed Computation for Genomic
Association Tests

Claudia V. Brito

Abstraci—Breakthroughs in sequencing technologies
led to an exponential growth of genomic data, provid-
ing novel biological insights and therapeutic applications.
However, analyzing large amounts of sensitive data raises
key data privacy concerns, specifically when the informa-
tion is outsourced to untrusted third-party infrastructures
for data storage and processing (e.g., cloud computing).
We introduce Gyosa, a secure and privacy-preserving dis-
tributed genomic analysis solution. By leveraging trusted
execution environments (TEEs), Gyosa allows users to con-
fidentially delegate their GWAS analysis to untrusted infras-
tructures. Gyosa implements a computation partitioning
scheme that reduces the computation done inside the TEEs
while safeguarding the users’ genomic data privacy. By
integrating this security scheme in Glow, Gyosa provides a
secure and distributed environment that facilitates diverse
GWAS studies. The experimental evaluation validates the
applicability and scalability of Gyosa, reinforcing its ability
to provide enhanced security guarantees.

Index Terms—Privacy-preserving, GWAS, distributed
systems, trusted execution environments.

[. INTRODUCTION

ITH the emergence of next-generation sequencing

(NGS) technologies, genome sequencing costs have de-
creased, enabling the generation of large amounts of genomic
data [34]. This presents new research opportunities on genetic
factors but requires efficient algorithms to handle such a volume
of data.
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Genomic Wide-Association Studies (GWAS) test the associ-
ation of hundreds of thousands to millions of genetic variants
in a cohort of individuals and find the variants statistically
associated with a specific trait or disease [37]. By 2021, more
than 5700 GWASes have been conducted using data from more
than one million individuals for more than 3300 traits [37].
The computational requirements of a GWAS depend on the
number of genetic variants, the number of individuals, and the
tested traits and phenotypes. As the datasets keep increasing in
size along these different variables, the computational capacity
offered by a single workstation is often insufficient.

The conventional approach of enhancing server capacity by
augmenting core processors, memory, and storage resources
may encounter significant challenges, including exponentially
escalating costs and inherent hardware limitations [32]. Al-
ternatively, distributed computing allows using several servers
(clusters of servers) in parallel and provides a more scalable
and efficient solution to reduce the runtime execution of par-
allelizable and data-intensive algorithms, such as GWAS [7].
However, acquiring, maintaining, and managing a distributed
server infrastructure is a costly and complex task requiring
high-end hardware and specialized human resources [32].

A more accessible option involves running GWAS analysis
remotely on distributed infrastructures managed by third-party
Cloud Computing (e.g., GCP [15]), and HPC services (e.g.,
TACC [36]). This approach offers significant benefits, especially
when: i) a single entity, such as a Hospital, possesses a large
genomic dataset but lacks the processing and storage power for
analysis; and ii) a consortium of entities, including Hospitals
and research laboratories (see Fig. 1 from Supplemental Ma-
terial), collectively aims to analyze their datasets in a unified
remote infrastructure, enabling large-scale analysis using shared
data.

Challenges: Users trust third-party entities to keep their infor-
mation secure when offloading data storage and processing to
their infrastructures. However, there have been several reports
detailing both external (e.g., done remotely by a hacker) and
internal attacks (e.g., led by a malicious system administrator
with physical access to the cluster) that have successfully com-
promised the privacy of sensitive information kept at remote
infrastructures [15]. These attacks are one of the major barriers
limiting the broader adoption of cloud computing services for
storing and processing genomic data since its disclosure can lead
to the complete identification of individuals [14]. For instance,
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early studies indicated that only 75 SNPs could help identify
an individual [14]. By carrying information on disease predis-
position, genomic data leakage may imply privacy risks for the
individual and their future and previous generations [14].
When outsourcing a genomic data processing pipeline (i.e.,
data collection, processing, and sharing) to third-party infras-
tructures, users increase the attack surface and become suscep-
tible to three major groups of attacks. Membership inference
attacks allow the adversary (attacker) to leverage the knowledge
it has on a specific individual (e.g., disease predisposition)
and query the analysis results explicitly. Specifically, Homer’s
attacks use the background information on the human genome
available in the public domain to infer whether an individual’s
genetic variants information was used for a specific study [38].
Re-identification attacks aim to reveal the identities of individu-
als whose data have been anonymized and used in genomic anal-
ysis. Recent studies have shown that demographic information
can be linked to public genomic data and databases by linking
genomic data with genealogical databases [23]. The goal of data
poisoning attacks is to manipulate the analysis results. These
attacks can generate false assumptions and associations when
applied to GWASes, introducing bias and yielding erroneous
discoveries [26]. For a detailed overview of these attacks and
the genomic pipeline, see Section 2 of Supplementary Material.
Privacy-preserving solutions based on Homomorphic en-
cryption (HE), Differential Privacy (DP), and Secure Multi-
party computation (SMPC) typically incur a high-performance
penalty (e.g., GWAS studies [16], [21]). Such drawback mo-
tivated a new line of research exploring TEEs to ensure the
privacy of GWAS at untrusted infrastructures [6], [33]. However,
current solutions: i) are designed to run on a single server (i.e.,
are not practical, performance-wise, for studies involving large
datasets) and, ii) require all computation to be offloaded to a
secure TEE (i.e., further decreasing performance). Therefore,
designing a privacy-preserving solution for GWAS that takes
advantage of the computational power provided by distributed
infrastructures and selectively uses TEEs to protect sensitive
user information is still an open research challenge.
Contributions: We propose Gyosa,' a novel distributed and
privacy-preserving framework for securely executing GWAS in
untrusted and distributed infrastructures. Gyosa is built on top
of Apache Spark [40], a distributed computation framework,
and uses Glow [11], a library for genomic processing including
regression-based algorithms, statistical tests, and population
stratification methods to perform GWAS. These are combined
with TEEs, namely Intel SGX, to provide a secure environ-
ment where sensitive genomic information can be efficiently
processed in plaintext without disclosing it to attackers.
Gyosa’s novelty stems from the necessity and lack of solutions
to outsource and distribute GWAS computation to untrusted
third parties securely. Gyosa enables fine-grained differentiation
between sensitive and nonsensitive information in an efficient,
secure, and practical fashion. Furthermore, Gyosa leverages the

The system’s name relies on the assumption that we are putting all sensitive
data inside a trusted execution environment, similar to a dumpling.

genomic analysis pipeline offered by Glow and defines the spe-
cific set of operations from genomic association tests that can run
outside of secure TEE enclaves without inducing data leakage.
Thus, this distributed approach and careful differentiation allow
large-scale GWAS algorithms to run while maintaining the con-
fidentiality of critical data. Indeed, this is a key takeaway from
this work, showing that by distributing GWAS computations,
one can achieve practical and usable privacy-preserving designs.
In brief, this work provides three major contributions:

® We introduce Gyosa, a distributed and privacy-preserving
framework for securely executing GWAS on untrusted
infrastructures, resorting to Apache Spark and Glow for
distributed genomic processing.

® Gyosa integrates with Intel SGX, to ensure sensitive ge-
nomic data is kept private from potential attackers.

e Through fine-grained differentiation, Gyosa selectively
places data inside secure TEEs, achieving a better trade-off
between security and performance.

e We evaluate Gyosa with three genetic association
algorithms—Logistic Regression, Linear Regression, and
X2—demonstrating that Gyosa maintains the accuracy
of the output of these algorithms while enabling scalable
computation across multiple servers.

Il. RELATED WORK

Next, we discuss the related work on privacy-preserving ge-
nomic analysis that resorts to: i) software-based or, ii) hardware-
based cryptographic primitives. Then, we present a summary and
taxonomy of the related work.

Software Approaches: To enable the execution of GWAS at
untrusted infrastructures while ensuring data privacy, several
approaches have been proposed based on standard cryptographic
primitives such as HE, SMPC, and DP [18], [22]. HE-based solu-
tions for GWAS have been shown to impose a high-performance
execution time penalty and can only support a limited number of
algorithmic operations [16]. Conversely, SMPC enables secure
data storage and computation even across multiple entities that
do not trust each other. However, it resorts to distributed pro-
tocols that require several rounds of network communication,
adding a significant delay to the execution of GWAS [41]. In
contrast, DP provides a less penalizing solution regarding per-
formance overhead. Nevertheless, adding noise to the data and
computation can compromise the accuracy and undermine the
results. Also, DP cannot effectively manage high-dimensional
data or cope with growing data volumes [10].

Hardware Approaches: TEEs have shown great potential as
alternative solutions to ensure privacy-preserving computation
and storage in untrusted infrastructures for genomic data [8],
[19]. While this technology is promising for running GWAS,
its application has been limited to a single-server [6], [33]. By
taking advantage of distributed infrastructures (i.e., multiple
servers), it is possible to enhance the speed and scalability
(i.e., the amount of data being analyzed) of GWAS. However,
developing a distributed solution for privacy-preserving GWAS
requires a fundamentally new design. Gyosa belongs to this
group of approaches while resorting to data encryption to protect
the information handled outside TEEs.
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TABLE |
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O - HE @ - Other Tests

Summary: In Table I, we present a taxonomy of related work
systems divided into five categories: i) cryptographic primitives;
ii) architecture; iii) stages of the genomic pipeline; iv) algo-
rithms; and, v) availability.

For the first category, we consider the most relevant primitives
for genomic data analysis: HE, SMPC, DP, and TEEs. The
architecture topology of each system is decomposed into dis-
tributed, centralized, and collaborative, representing each sys-
tem’s architectural design. The centralized sub-category refers
to solutions that perform the computation in a single server.
The distributed sub-category refers to solutions that distribute
the computation across multiple servers to parallelize the com-
putation. This model involves partitioning tasks and data to
improve efficiency and scalability, with each node operating
independently and concurrently handling its assigned tasks.
Conversely, the collaborative sub-category refers to solutions
that require the collaboration of multiple entities to perform the
computation, a setting commonly used when resorting to SMPC
or federated environments. This model prioritizes data privacy
and security when nodes collaborate by sharing intermediate
results rather than raw data. For the third category, we consider
the stages of the genomic pipeline where the solution is applied,
namely, data analysis and public release. Within public release,
we consider the aggregation of the final results from an analysis
in a collaborative setup. For the fourth category, we consider the
algorithms supported by each solution, such as GWAS and read
mappings.

Most of these solutions are tailored for the collaboration
between entities in a federated way, meaning that the data is dis-
tributed across multiple entities, and computation is performed
collaboratively [8], [10], [16], [41]. However, these approaches
are unsuitable when outsourcing GWAS computation to a
single cloud environment, and Gyosa differs from them as it
parallelizes the computation among different servers to decrease
the execution time. Another relevant aspect lies on the different
types of computation considered. Privacy-preserving solutions

have been applied to a wide range of tasks, typically on the data
analysis stage, such as read mappings [20], [39], statistical tests
[2], [8], [17], [18], [21], [29], [33], [41], queries (other tests) [6],
[10], [16], [17], [33] and even GWAS [18], [19], [30]. The only
distributed solution among these, HySec-Flow [39], focuses on
the problem of read mappings. While using a specific library
to perform this task, the solution does not allow the seamless
integration of other tasks (e.g., GWAS, statistical tests, PCA).

Based on this and to the best of our knowledge, Gyosa is the
first solution to support the execution of GWAS in a distributed
environment while ensuring data privacy. Finally, by relying on
Glow, Gyosa stands out from other solutions by enabling the
addition of new tasks (e.g., statistical tests, genomic imputation,
and querying) in the genomic pipeline, making it easier to extend
the secure analysis pipeline.

[ll. METHODS
A. GWAS

Genomic pipelines comprise tasks like Short-read Sequence
Alignment, Genome Imputation, Variant Call, and GWAS. This
work focuses on GWAS, which tests the correlation between an
SNP’s allele frequency and specific phenotypes. Such studies
have been performed for many phenotypes, including several
diseases. Tested individuals are separated into case and control
groups and require large sample sizes to achieve significant and
robust results [37].

1) Statistical Methods.: To evaluate the performance of
Gyosa, we illustrate its practical application by employing Lo-
gistic and Linear Regression algorithms and test the associa-
tion with continuous and binary phenotypes. We employed the
X? test, as in [19], to assess Gyosa’s scalability and perfor-
mance with varying workloads and increasing workers. These
algorithms are chosen based on the current state-of-the-art,
corroborating their efficiency in conducting GWAS [37].2

Linear Regression checks the relation between one dependent
continuous variable (e.g., weight or blood pressure) and multiple
independent ones, which can include various genetic markers or
environmental factors. As such, this algorithm is used for finding
specific genetic correlations with traits and diseases [13]. The
algorithm is efficiently implemented based on matrix multiplica-
tions and inversions. For a matrix of m x n dimensions, where
m is the number of samples and n is the number of features,
the time complexity approximates O(m * n? + n3) [35]. This
reflects the costs associated with processing the data: the first
term, O(m * nz), arises from calculating the product of the
sample size m and the square of the number of features n?,
while the second term, O(n3), corresponds to the operations
required for matrix inversion.

Logistic Regression performs binary classification based on
dependent variables to distinguish between case and control
cases. For instance, logistic regression can assess the likelihood
of a phenotypic observation belonging to a class based on genetic

2Principal Component Analysis (PCA) is not currently implemented in Glow,
and its privacy requirements may differ from Gyosa current implementation due
to its increasing data exchange and convergence rate.
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markers, revealing connections between phenotypic features and
genetic data [3], [37]. The time complexity of Logistic Regres-
sion can be decomposed into d as the size of the phenotype
vector and n as the covariates or features of the phenotype,
O(nd). As the number of features or the complexity of the
phenotype increases, the time required for logistic regression
analysis increases linearly, making it practical for handling large
genomic datasets [35].

X2 Test tests if the observed and the expected frequencies
(allele counts) in the case-control groups differ significantly.
The test can be defined as follows:

X? =

Z (observed; — expected;)? )

expected;

in which we find the observed and expected frequency of the ith
SNP. Differently from previous statistical methods, X ? focuses
solely on this frequency. The time complexity of X2 is O(n),
where n is the number of samples [31].

B. Design

Gyosa is a privacy-preserving distributed GWAS-focused so-
lution. It builds on top of SOTERIA [4] and resorts to Apache
Spark and Glow to offer a distributed genomic analysis frame-
work. Gyosa uses Intel SGX, which establishes secure memory
regions called enclaves, providing a robust privacy-preserving
solution and focusing on privacy and data confidentiality. These
enclaves protect sensitive data during processing and prevent
unauthorized access. The Supplementary Material further details
Apache Spark, Glow, and Intel SGX.

SOTERIA is a privacy-preserving distributed machine learn-
ing solution that leverages Intel SGX to protect sensitive data
and computations. It is designed to handle general-purpose ML
workloads, which differ from GWASes. SOTERIA leverages
the distributed processing nature of Apache Spark and its MLlib
library. The main novelty of SOTERIA stems from its partition-
ing scheme that allows the distribution of the computation across
secure and non-secure workers.

We emphasize that Gyosa differs from SOTERIA by consid-
ering a different processing pipeline for genomic association
tests. This is highlighted in three main aspects, further detailed:
i) supporting a new framework (i.e., Glow), ii) including trans-
parent encryption of a new type of dataset file format (i.e., VCF
files), and iii) redefining the sensitive analysis steps that must be
performed inside secure enclaves.

Furthermore, Gyosa differs from state-of-the-art solutions
which i) perform all computations inside TEEs, and ii) are
designed for single-node setups. To overcome TEEs’ memory
constraints and computational bottlenecks due to the limited
enclave size, Gyosa adopts a hybrid partitioning scheme. This
approach allows efficiently distributing the computational work-
load between secure enclaves (for sensitive genomic data) and
non-secure environments (for non-sensitive tasks), providing
better performance than previous solutions. Additionally, Gyosa
leverages a distributed architecture that scales across multi-
ple servers, addressing the scalability limitations inherent in
single-node SGX solutions. By integrating Apache Spark and
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Fig. 1. Gyosaarchitecture schematic. A Biocenter encrypts and sends
its data to distributed data storage. The genomic association studies run
securely and distributed with Gyosa.

Glow with Intel SGX, Gyosa ensures that computations are both
privacy-preserving and performant, making it a more practical
choice for large-scale genomic studies.

1) Threat Model: Gyosa adopts the standard SGX threat
model supported by existing research [4], [8], [16], [19]. We
consider a scenario where a client seeks to use sensitive ge-
nomic data and perform computation on top of it at third-party
infrastructures. In this model, the client and the hardware are
deemed trustworthy, whereas the third-party infrastructure’s
other components (i.e., host OS, libraries) are regarded as un-
trusted. This leads to an honest-but-curious adversary model,
where the adversary is honest and adheres to the protocol but is
curious and seeks to obtain information.

2) Gyosa’s Key Components: Gyosa is split into the client
module, deployed on a trusted infrastructure, and the cluster
module, deployed on an untrusted site (Fig. 1). The client
module encompasses the encryption of the genomic data and
the submission of the GWASes to the untrusted infrastructure.
The cluster module includes a distributed Apache Spark and
Glow cluster to which the client will submit the analysis.

Client Module: The client module includes three main op-
erations. First, it allows the encryption of VCF files based on
authenticated encryption. To provide this, Gyosa employs an
AES-GCM-128 authenticated encryption cipher mode, which
is added to Glow by providing a new class to encrypt VCFs.
Sensitive data is transparently encrypted before leaving the
trusted premises, thus avoiding changes in how users implement
or specify their GWAS. Second, the client module handles the
secure outsourcing of the GWAS requests issued by users to the
Spark Cluster. Finally, this module allows the decryption of the
analysis results when returned to users.

To perform a GWAS, users must specify a task script file where
the analysis steps and all the required parameters are defined.
This file contains sensitive information about the analysis task
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that cannot be leaked or tampered with. Thus, the encryption
module encrypts the task script, which can then be sent via
unprotected network channels.

The manifest is a predefined file that contains the libraries to
run the Glow pipeline and the path for the dataset. To ensure data
security and integrity when exchanging this file, a secure channel
between the client and the Spark Cluster is created only once at
the bootstrap phase. This secure channel is also used to transmit
the user’s encryption key, which is then used and handled only
inside the SGX enclaves. Implementation-wise, the channel can
be created by resorting to a protocol such as TLS with Pre-Shared
Keys (TLS-PSK), which provides robust authentication and
encryption while being less resource-intensive than traditional
SSL/TLS handshakes.

Cluster Module: The cluster follows Spark’s workflow on
the untrusted site, with a master and N workers running on
distinct servers. The master is deployed inside an SGX enclave
at the untrusted server since the Spark Driver and Spark Context
modules require reading plaintext information (i.e., task script)
to distribute the processing tasks to the workers.

We deploy a secure and non-secure worker at each cluster
server. The secure worker runs inside an SGX enclave and han-
dles all the computation over sensitive data, while the non-secure
worker handles non-sensitive data and runs outside of SGX. The
exchange of sensitive information between secure workers and
with the master is done via secure network channels using the
TLS-PSK protocol (Fig. 1).

Fartitioned design: For its partitioned scheme, Gyosa rede-
fines the computation partitioning across secure and non-secure
workers. In Gyosa, non-sensitive computations involve residual
values (e.g., matrix calculation of metadata or calculations over
single genotype information) and the correction of statistical
tests, which in Glow are based on the Firth’s approximation
algorithm [24]. This correction is performed as a score test,
comparing the predicted and observed values to validate the re-
sulting P-values. All remaining operations (e.g., read operations
on top of the VCFs, dataframe transformations, and regression
operations) are conducted on sensitive data within SGX enclaves
at the secure workers. For example, in Logistic Regression,
p-values are determined through the Firth approximation algo-
rithm (detailed in Supplementary Material, Section 4). Since
this algorithm processes only p-values, and not sensitive data,
it is performed outside the secure worker’s enclave. This design
ensures that all sensitive data is consistently encrypted, even
when transmitted and stored outside the secure environment.

3) Gyosa’s Workflow: The client (a) resorts to Gyosa’s en-
cryption module to encrypt VCF files at the trusted premises.
Then, (b) encrypted data is sent to a distributed data storage
shared by various servers on the untrusted infrastructure. Simi-
larly, the client specifies the studies it wants to run as task scripts
and encrypts these before sending them to the untrusted infras-
tructure @. Gyosa assumes a single bootstrapping phase between
client and master in which a secure channel is established and
used to share the manifest file and the client’s key, required to
encrypt the VCF files and tasks’ scripts. This key is also used to
decrypt the final results @.

Following a master—worker architecture, the master, running
inside an SGX-enabled server, receives the task the client wants

to perform and the path (within the manifest file) for the
encrypted dataset. The former is sent encrypted through an
insecure channel, while the latter is forwarded inside the previ-
ously established secure channel. After decrypting the task script
inside the secure enclave, the master forwards specific sub-tasks
to each secure worker ® through secure channels established
between their enclaves. With these sub-tasks, secure workers
can fetch the required data from the distributed storage backend
and perform the computation. Since data is encrypted at the
storage backend, it must be fetched and decrypted at each secure
worker enclave to be processed in plaintext (i.e., inside an SGX
enclave) @.

Then, workers broadcast intermediate results between them
. In addition, following the partitioning of computation, secure
workers broadcast metadata to non-secure workers. Again, after
performing their computation, the non-secure workers broad-
cast the information back to the secure workers @. Sensitive
information shared across secure workers is done through se-
cure channels established between their enclaves. In the final
worker-related stage, a consensus regarding the result is reached
and sent to the master’s enclave through a secure channel @.
Final results are aggregated and encrypted by the master, with
the client’s key, and sent to the client for transparent decryption
at the trusted premises ©.

IV. RESULTS

Gyosa was evaluated to understand the impact of adding pri-
vacy protection on top of a baseline stack composed by Apache
Spark and Glow, which does not provide such guarantees. Two
main questions are answered with this evaluation: i) How does
the execution time of Gyosa compare with a non-secure baseline
setup? ii) How does Gyosa behave when increasing the workload
size and the number of servers?

A. Testbed

Dataset: For the benchmark, we used a real-world dataset
by the Genome in a Bottle Consortium [42], with genomes
sequenced as part of the Human Genome Project, namely, data
from the Ashkenazim Trio family (father, mother, and son).
Phenotype information was simulated with the PhenotypeSimu-
lator [25]. The algorithms were tested for different workloads by
scaling the original dataset by several factors to reach sizes 1, 4,
16, and 32 GB. For the scalability tests, we generated a synthetic
dataset of 80,000 VCF files with 1 106 unique SNPs, each VCF
file representing one individual. We define the workload size as
20k, 40k, 60k, and 80k individuals.

Environment: Tests were performed in a cluster of 4 servers
with OS Ubuntu 18.04.4 LTS and Linux kernel 4.15.0. Each
machine has a 10 Gbps Ethernet card connected to a dedicated
local network and 16 GB of memory. Gyosa uses Apache Spark
3.2.1 and was deployed with version 2.6 of the Intel SGX Linux
SDK with driver 1.8, with 4 GB of memory. The client and Spark
master ran on one server, while Spark workers were deployed
on the remaining servers.

Encryption Mode: We used AES-GCM-128 for its strong se-
curity and efficiency, ensuring confidentiality and data integrity.
AES-GCM-128 adds a fixed overhead of 28 bytes per encrypted
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Fig. 2. The impact of Gyosa on variable workloads (1 GB, 4 GB, 16 GB, and 32 GB) with the Linear Regression and Logistic Regression algorithm

compared to baseline. a) Execution time of Linear Regression in logarithmic scale; b) Comparison of p-values between approaches for Linear
Regression; ¢) Execution time of Logistic Regression in logarithmic scale.

message (16 bytes for the authentication tag and 12 bytes for
the IV). This overhead is negligible for large messages, such
as those in HDFS (Apache Spark’s storage backend), which
uses a 128 MB block size — making the 28 bytes insignificant
compared to the block size.

Setups: We compare Gyosa against a baseline setup without
security measures (i.e., Glow) to quantify the performance im-
pact of our privacy-preserving approach. Further, we compare
Gyosa’ distributed design and partitioning scheme against state-
of-the-art approaches, i.e., that are designed for a single-node
setup and perform all computations inside SGX enclaves (see
also Section 5 of the Supplementary Material).

Performance Metrics: We focused on three key performance
metrics: runtime execution, p-value comparison, and memory
usage. We measured the time taken for each algorithm across
various dataset sizes to assess efficiency and scalability and
compared p-values from our solution with a baseline lacking
privacy guarantees to evaluate accuracy. Lastly, we monitored
the memory consumption of our system while increasing the
number of servers to assess resource efficiency.

Experimentation: All experiments were repeated at least 3
times. This approach allowed us to average results, ensuring
statistical stability and minimizing the impact of potential vari-
ability in the environment. The scalability tests include over
72 experiments conducted across nine days, while runtime
results are based on over 80 experiments carried out over
56 hours.

B. Secure GWAS

To assess the impact of Gyosa’s security mechanisms on
the execution time of the algorithms, we compare the results
with the ones for the baseline setup. Fig. 2 shows the Lin-
ear Regression and Logistic Regression algorithm results. In
Fig. 2(a), for a workload of 1 GB, the runtime overhead of
the linear regression algorithm is around 4.5x. For 32 GB, the
overhead of Gyosa reaches the maximum for the performed
tests, with 10x compared to the baseline setup. Furthermore,
this result underlines the trade-off between enhanced privacy and
processing efficiency, demonstrating Gyosa’s ability to handle
large datasets with acceptable performance cost despite the
added layer of security. The comparison of p-values between

the two approaches shows negligible differences (see Fig. 2(b)).
The slightly different values observed result from the final
approximation since it deals with small values and reverts them
to —logio(p — value). Similarly, for the Logistic Regression
algorithm and workload size of 1 GB and 32 GB, Gyosa has a
runtime overhead of 4x and 9.5x (see Fig. 2(c)).

Gyosa can be used in a cluster setup with multiple servers,
each including one secure worker and one non-secure worker.
Fig. 3(a) shows the results of the overhead imposed for the
X? frequency test. Gyosa leverages the scalability offered by
Apache Spark and Glow, as shown by the experiments with up
to 3 servers. We verify a linear decrease in the runtime execution
when increasing the number of servers for both Gyosa and
baseline setups. Namely, when comparing the execution time
obtained by running this experiment over 80,000 VCF files with
one and three servers, the runtime execution decreases up to
2.7X (i.e., 2.4 hours). Regarding the security guarantees, the
runtime overhead ranges from 1.3x to 3x for a workload of 40 k
individuals with three servers. These results confirm Gyosa’s
ability to effectively use a distributed architecture to balance
performance with privacy requirements.

V. DISCUSSION

Next, we analyze the security guarantees of Gyosa and pin-
point how our design ensures data confidentiality and pro-
tection against known attacks. These guarantees follow Sote-
ria’s theoretical proofs and are complemented by an empirical
performance-based security analysis.

Security Analysis: Gyosa combines different mechanisms to
safeguard users from attacks (see Section 2 of Supplementary
Material for more details on these attacks). It provides transpar-
ent authenticated encryption, which protects sensitive data from
being disclosed to unwanted parties and ensures anti-tampering
properties for clients’ data stored in untrusted infrastructures.
This feature protects users from poisoning attacks by limiting
access to the plaintext data and not allowing the addition of
poisoned data. Membership inference and re-identification at-
tacks are subject to an attacker’s previous knowledge of the
genomic data. By ensuring that private data, while at rest and in
transit, is always encrypted and that any sensitive computation
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is performed on SGX enclaves, Gyosa avoids disclosing such
knowledge to attackers.

Partitioning the computation across the secure and non-secure
workers improves the performance but increases the attack
surface. However, previous work shows that genomic data
cannot be inferred from the information leaked from sharing
metadata and statistical information [27]. Given this assumption,
and by not changing the main security protocol specified by
SOTERIA, Gyosa can keep the information leakage contained to
avoid the success of the aforementioned attacks. The full proofs
for SOTERIA’s protocol, followed by Gyosa, are available at [1].

Our benchmarks, with over 152 combined experiments, reveal
that the performance penalty in Gyosa is proportional to the
data size for regression and classification tasks. Notably, adding
security guarantees in Gyosa does not alter the results from the
statistical tests, making Gyosa a novel and practical option for
privacy-preserving genomic analysis.

Performance and Scalability Analysis: The performance over-
head of Gyosa’s security features, including encryption and
secure enclave processing, was assessed by comparing execution
times with and without these mechanisms. The results highlight
the trade-offs between data privacy and computational efficiency
across various workloads, evaluating Gyosa’s security perfor-
mance regarding computational costs.

Increasing the number of servers allows for distributed and
parallelized GWAS computations, significantly reducing run-
time and memory usage, as shown in Fig. 3(a) and (b). Fig. 3(b)
shows that despite Glow being a memory-intensive solution [11],
increasing the number of servers leads to a decrease in the
mean memory usage. Compared with other SGX-based solu-
tions, namely [5], Gyosa shows comparable runtime overhead.
Notably, Gyosa distinguishes from all these state-of-the-art solu-
tions [8], [19] by allowing distributed computation across several
servers in a cloud environment.

High-end servers used by state-of-the-art solutions (e.g., a
configuration with > 40 cores, > 2.0TB of physical memory,
and 10 TB of disk space [8]) are not widely available and
require substantial resources for their setup and maintenance. A
cost-efficient alternative is to use cloud environments that allow
the distribution of computation by relying on several servers,
reducing the execution time of genomic analysis. In Google

Cloud, as of 2024, with 391.35€ per month, one could opt for i)
one server with 16 cores and 64 GiB of memory or ii) four servers
with four cores each and 16 GB of memory. While solution i)
provides 730 h of computation, solution ii) provides a total of
2,920 monthly hours of computation [12].

Currently, the second generation of SGX includes a 128 MB
page cache and data that exceeds this must be swapped
to/from an encrypted memory region, resulting a performance
penalty [9]. In our setup, the amount of encrypted memory
attributed to SGX is limited to 4 GB in each server, leading
to additional disk swapping for memory-intensive GWAS al-
gorithms [9]. This SGX’s limitation cannot be solved through
hardware updated but is mitigated by Gyosa’s distributed design.
By distributing computation across multiple servers, Gyosa
leverages from the aggregated page cache and encrypted mem-
ory sizes of multiple servers, justifying the decreased runtime
execution observed for Gyosa in Fig. 3(a).

Contributions and Limitations: Unlike previous solutions,
Gyosa leverages a hybrid partitioning scheme and distributed
execution model to improve performance while maintaining data
privacy. Our comparison against a fully enclave-based SOTA
solution (detailed in the Supplementary Material) further un-
derscores the substantial runtime and scalability improvements
enabled by Gyosa’s design. The results demonstrate that the
security overhead is lower for smaller workloads since compu-
tations fit within the enclave’s memory. For larger workloads,
Gyosa mitigates performance penalties by distributing compu-
tations across multiple servers. These trade-offs make Gyosa an
effective and scalable privacy-preserving solution for genomic
data analysis, balancing computational efficiency with strong
security guarantees. Our work leaves some open challenges to
be further explored. First, the current implementation of Gyosa
supports association tests, namely regression-based algorithms
and statistical tests. In the future, it would be valuable to include
other GWAS algorithms, such as Principal Component Analysis.
Second, Gyosa does not focus on the mitigation of known SGX
side-channel attacks, which are a known threat to the security
of the system. We highlight that solutions addressing concerns
such as Denial of Service (DoS), side-channel attacks, or memory
access patterns can be employed in Gyosa [28]. However, this
research is orthogonal to the one proposed here. Additionally,
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our solution could incorporate other techniques, such as DP, to
provide privacy for collaborative and federated GWAS studies
involving multiple institutions. Notably, these limitations do not
hinder Gyosa contributions and applicability. Indeed, solving
such limitations is an important direction for future research.

V1. CONCLUSION

Gyosa offers the first end-to-end privacy-preserving genomic
data analytics solution built on top of Apache Spark and
Glow. Distributing GWAS computation across multiple un-
trusted servers allows researchers to study larger amounts of
sensitive genomic data efficiently. Furthermore, by following
a computation partitioning scheme tailored for GWAS, Gyosa
decreases the amount of data transferred and processed at se-
cure enclaves, boosting the algorithms’ performance while not
compromising security or the quality of the analysis.

Finally, Gyosa stands out from other solutions by enabling the
addition of new tasks (e.g., statistical tests, genomic imputation,
and querying) in the genomic pipeline, making it easier to extend
the secure analysis pipeline.
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