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ABSTRACT

We present LazyFS, a new fault injection tool that simplifies the

debugging and reproduction of complex data durability bugs ex-

perienced by databases, key-value stores, and other data-centric

systems in crashes. Our tool simulates persistence properties of

POSIX file systems (e.g., operations ordering and atomicity) and
enables users to inject lost and torn write faults with a precise

and controlled approach. Further, it provides profiling information

about the system’s operations flow and persisted data, enabling

users to better understand the root cause of errors.

We use LazyFS to study seven important systems: PostgreSQL,

etcd, Zookeeper, Redis, LevelDB, PebblesDB, and Lightning Net-

work. Our fault injection campaign shows that LazyFS automates

and facilitates the reproduction of five known bug reports contain-

ing manual and complex reproducibility steps. Further, it aids in

understanding and reproducing seven ambiguous bugs reported by

users. Finally, LazyFS is used to find eight new bugs, which lead to

data loss, corruption, and unavailability.
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1 INTRODUCTION

If no special care is taken in the presence of faults (e.g., power
outages and crashes), modern storage solutions cannot ensure that

all pending write operations are actually finished and can, in fact,

complete only an arbitrary subset of them [1, 3, 30, 34, 37, 53]. This

is a major issue for databases, key-value stores, and other data-

centric systems, as naive implementations might result in lost data,
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in relation to what has already been acknowledged to users, or even

in outright data corruption, as the internal consistency of persis-

tent structures is endangered. Therefore, many of these systems

use transactional techniques such as the classic DO-REDO-UNDO

protocol to avoid loss and corruption of data [15]. The system ju-

diciously keeps some redundancy in a log file while modifying

persistent data structures such that it becomes possible, after a

fault, to roll back unfinished operations and replay finished ones

that have not been fully applied, regardless of the completion status

of writes at the time of the fault.

Thus, these fault-tolerant techniques critically depend on the

ability to order operations that write to persistent storage and wait

for their completion. Within POSIX Operating Systems (OS), this

can ostensibly be achieved through some variation of the fsync
system call, which ensures that data previously written and cached

at different layers of the stack (e.g., file system, block device) is

actually flushed to the underlying storage device [45, 51]. This leads

to a dilemma for system developers: to easily ensure correctness,

one should write small portions of data, handled atomically by the

storage stack, and call fsync to ensure their durability and order.
However, this greatly restricts parallel I/O and underuses available

bandwidth, with a profound impact on performance [6, 53].

For performance reasons, many systems issue multiple write
calls or single ones with larger payloads (i.e., size of the content
being written) before explicitly flushing written data. This greatly

increases the variety and complexity of possible failure scenarios.

For example, writes may be completely lost (i.e., lost writes) or

may be persisted partially at the storage device (i.e., torn writes).
Data may even be persisted out of temporal order, i.e., more recent

data is persisted, but older data is lost [1, 3, 6, 37]. This may happen

because the storage stack has several layers where write calls may

be reordered and flushed in background to the underlying device.

As an example, consider that a system issues write1 followed by

write2, but the latter is reordered at the file system’s layer and

flushed first. If an OS crash happens before flushing write1, then
only the content of the second write is persisted. The same can

happen when writing payloads that are larger than the page size of

the file system’s cache. For example, consider the system issues a

write call with a payload of 8 KiB, which is divided into two 4 KiB

pages at the file system layer. If the first page is flushed but a crash

happens before flushing the second, the latter’s content will not be

available upon recovery.

The core challenge for developers is that there is a strong in-

centive to reduce the use of fsync for performance, but this leads
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to increased complexity in developing, maintaining, and testing

systems [38, 48]. Even in mature systems, it becomes hard to cor-

rectly identify and reproduce crash consistency problems. As the

first contribution of this paper, we validate this challenge by study-

ing twelve bug reports from widely used database, key-value, coor-

dination and blockchain systems. Our findings (§2.2) show:

• Many reports are ambiguous and there is no clear associa-

tion between the error reported by the system and the fault

that originated it.

• When available, the steps to reproduce bugs include manual

(e.g., plugging of the server’s power cord) and complex (e.g.,
changing source code) instructions.

• Current tracing and fault exploration tools are helpful but

insufficient to quickly identify, reproduce, and validate the

bugs and potential fixes for these.

Therefore, system developers need a better approach to sim-

plify and automate the identification, reproduction, and validation

of these bugs. As our second contribution, we propose LazyFS, a

software-based tool for injecting lost and torn write faults at the

file system level, and aimed precisely at testing software solutions

with strong data durability requirements. Its main goal is to aid de-

velopers in reproducing bugs and validating the crash consistency

of their systems while providing insightful information about the

cause and impact of observed errors.

Briefly, LazyFS implements its own in-memory page cache, which

provides complete control over when written data is flushed into

persistent storage. Consequently, it can generate scenarios that are

possible but hard to reproduce by enabling developers to specify

the type, timing, and placement of faults to be injected, either in

a static configuration file or at runtime, through a custom API.

Our tool allows testing any POSIX-compliant system and does not

require any code changes. Moreover, LazyFS provides insightful

profiling information about the flow of system calls and state of

written data (i.e., persisted and cached data) so that developers can

better understand the root cause of errors.

As the third contribution, we use LazyFS to study seven impor-

tant systems: PostgreSQL [44], etcd [13], Zookeeper [16], Redis [47],

LevelDB [26], PebblesDB [36], and Lightning Network [28]. Our

fault injection campaign shows that LazyFS eases and automates the

reproduction of twelve known bug reports either containingmanual

and complex steps, or partial and ambiguous information, for their

reproducibility. Further, we identify eight new bugs, from which

four are already confirmed by the developers [9–11]. One of them

is discovered through the integration of our tool with the Jepsen

distributed systems testing framework [17]. Currently, LazyFS is

integrated into the testing environments of two production-level

systems, namely etcd and MongoDB [12, 31].

2 BACKGROUND AND MOTIVATION

The typical flow of write operations from systems using a kernel-

based POSIX storage stack is shown in Figure 1. Write system calls,

or related ones (e.g., pwrite, writev), are intercepted first at the

File System layer ( 1 ), then go through the Block I/O layer ( 2 )

and finally reach the Disk hardware layer ( 3 ).

To improve write performance, each layer usually buffers data in

volatile memory (e.g., in the file system’s page cache or block layer’s
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Figure 1: I/O flow of kernel-based POSIX storage stacks.

I/O cache) [1]. Buffered data is then flushed asynchronously to the

underlying layer by the operating system to better leverage the

available I/O bandwidth. Further, layers may implement other per-

formance optimizations, such as I/O scheduling and batching [45].

The latter may change the temporal order in which the contents of

consecutive write calls, or even of a single large call (e.g., when it

spawns across multiple file system pages), are forwarded into the

next layers and persisted at the disk device.

Although these designs offer better performance, they also in-

crease the probability of data loss under failures (e.g., a server’s

power outage). Figure 2 depicts three data loss scenarios that may

happen. For simplicity, and as an example, let us assume that A,
B, C, and D are 2 KiB fixed-size blocks that are grouped into 4

KiB pages at the Cache layer, a common size for many file system

implementations [5, 29, 50]. Note that these faults may happen if

blocks are written by a sequence of multiple small write calls or
by a single large write.

Lost write(s). One possible outcome is that all written data (ABCD)
is lost, potentially breaking the data durability requirements of the

system. This may happen because, at the moment of the crash, the

OS may not have yet triggered the flush of this content to disk.

Linear torn write(s). Alternatively, AB may be flushed asyn-

chronously to the device, but CD is lost. After recovery, the system

will only have access to partial data on the disk. Besides breaking

data durability, this fault may also break atomicity assumptions

made by developers. For instance, the system might assume that a

sequence of consecutive writes, or a single large write call, are

either fully persisted or lost under failures.

Non-linear torn write(s). Another outcome is that CD is flushed

asynchronously to the device, but AB is lost. After recovery, the

system will only have access to partial data on the disk, potentially

breaking durability and atomicity assumptions. This fault may break

the temporal ordering of the operations—for instance, if the system

wrote AB before CD). This can happen because write calls, or the
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Figure 2: Possible lost and tornwrite scenarios under faults.

pages where these are buffered, may be rescheduled and flushed in

a different order by the I/O layers (e.g., file system) [37].

The question, therefore, is: how can developers control these

asynchronous behaviors and make crash-consistent systems? In

kernel-based POSIX storage stacks, this can ostensibly be done

with the fsync system call or related ones (e.g., fdatasync). The
fsync call ensures that all modified cache pages for a given file are

transferred to disk to make the information available even if the

system crashes or is rebooted [45, 51]. There are also high-level

patterns for atomic writes. For instance, developers may write to
a temporary file, fsync it, and rename it to the final file [38, 53].

The caveat is that developers must use these calls wisely. If used

for every disk sector (e.g., 512 bytes) of written data, or even for

every block aligned with the file system’s page size (e.g., 4 KiB),

it adds impractical overhead to the systems’ I/O performance. If

used less frequently, i.e., after a sequence of writes and/or a large

write, one gets better performance. However, upon a failure, data

durability, atomicity and ordering assumptions may yet be broken.

To highlight the impact and the complexity of identifying, re-

producing, and fixing these faults, we next analyze twelve bugs

found in six widely used systems. We examine how users report

such bugs and answer the following questions:

• What are the symptoms reported by users?

• What is the impact on the system?

• How are the issues reproduced and fixed?

We selected bugs from one relational database (PostgreSQL [44]),

three key-value stores (LevelDB [26], etcd [13] and Redis [47]),

one distributed coordination system (ZooKeeper [16]) and one

blockchain application (Lightning Network [28]). We found these

bug reports by examining the systems’ mailing lists, GitHub repos-

itories, JIRA repositories, and blogs. Our aim is to study examples

of bugs linked to the aforementioned faults and not to comprehen-

sively analyze all systems exhibiting them.

2.1 Bugs overview

We next summarize each bug report by considering the interaction

between the reporter and the development team. When available,

we detail the information provided by the user to troubleshoot and

reproduce the bug and the insights gained from the discussion with

the development team.

Bug #1 (2012). A PostgreSQL user reports a corruption of the

statistics file (pgstat.stat) after restoring the database from a cold

backup. The development team suggests this corruption can result

from a partially written statistics file in the backup [40].

Bug #2 (2013). A ZooKeeper user mentions an error on the transac-

tion log. The error, which occurs after a crash on one of the servers,

indicates that the log file has an invalid magic number [58].

Bug #3 (2014). A LevelDB user reports a bug that occurs when a

power crash happens while a database is being created. The user

provides reproduction steps, highlighting that it is only triggered if

the crash occurs within a narrow time window and with specific

file systems. As stated, the bug results in an I/O error from LevelDB

and its possible cause is a missing fsync call after creating the

MANIFEST-000001 file [25].
Bug #4 (2014). A LevelDB user reports data corruption and conse-

quent failure in the database recovery. To reproduce the bug, the

user suggests turning off the PC while writing a big data block [22].

Bug #5 (2014). A LevelDB user describes potential data corrup-

tion resulting from missing fsync calls to rotated commit log files.

Namely, given the right timing and if a power loss happens, data

from an older log is lost while data from amore recent log is not [24].

Bug #6 (2014). A LevelDB user describes a bug that leads to cor-

rupted values. LevelDB appends the data from Put requests to the

commit log file. If a power loss happens, the last append can end up

with garbage or zeros. When users try to retrieve the values from

the database, corrupted values are returned [23].

Bug #7 (2015). A ZooKeeper user reports an error at the initializa-

tion phase caused by an empty transaction log. The user explains

that the problem results from killing the ZooKeeper server after

the creation of a new log file and before its header is flushed [59].

Bug #8 (2016).AZooKeeper user reports a potential cluster unavail-

ability scenario. When ZooKeeper appends data to the transaction

log file, it issues four write operations before the fdatasync call.
If a crash happens before the fdatasync call, the file system may

persist the fourth write and fail to persist the third. In this scenario,

ZooKeeper fails to start with a checksum mismatch error [60].

Bug #9 (2016). An etcd user reports that etcd data becomes cor-

rupted with a checksum mismatch error, and the only recourse is to

discard the current data directory and start afresh. The comments

explain that the issue results from a torn write [7].

Bug #10 (2019). Another etcd user reports a similar issue to Bug
#9, with etcd v3 throwing the same error about CRC mismatch after

a hard reboot. The author states the bug occurs due to a bad disk,

causing the file system to fail and lose writes [8].

Bug #11 (2022). A Redis user suggests saving the cluster config

and access control list files safely with an atomic pattern (i.e., write
to a temporary file, sync the file, rename it to the final name, and

sync the directory) [46].

Bug #12 (2022). A Lightning Network user notes that the function

ioutil.WriteFile does not synchronize the data to disk, and thus,
any data written with it can be totally or partially lost. Even though

the user cannot evaluate whether any of this function’s invocations

are critical, they suggest issuing fsync calls for a safer solution [32].

2.2 Takeaways

Table 1 categorizes each bug based on the reported impact, re-

production steps, and current status. We also identify the faults

associated with each bug and the affected files. Next, we provide
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Table 1: Bugs classification according to their fault type, im-

pact, affected files, reproduction steps and current status.
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#2 Z T # #  L # – – – – –

#3 L L # #  M      #
#4 L L #   M  # #    
#5 L L  # # L      #
#6 L T #  # L      #
#7 Z L # #  L # – – – – #
#8 Z T # #  L # – – – – #
#9 E T #   L # – – – –  
#10 E T #   L # – – – –  
#11 R L  # # O # – – – –  
#12 LN L  # # ∗ # – – – – #

Properties

 Reported

# Not reported

∗ Unspecified

– Not Applicable

System

E - etcd

L - LevelDB

LN - Lightning N.

P - PostgreSQL

R - Redis

Z - ZooKeeper

Fault Type

L - Lost write

T - Torn write

Files

L - Log

M - Metadata

O - Other

Status

 Closed

# Open

general takeaways that highlight the impact of these bugs and then

further discuss how developers are reproducing and fixing them.

Of the twelve bugs, three result in data loss, such as the loss of

key-value pairs in LevelDB (Bug #5) or the loss of users’ authenti-
cation rules in Redis (Bug #11). Five of the bugs lead to corruption

of information at different granularity levels, including data cor-

ruption (e.g., corrupted values in Bug #6), and file corruption (e.g.,
corrupted metadata files in Bug #4).

Ultimately, seven of the bugs affect availability. For example, in

Zookeeper, these faults make some servers unable to bootstrap,

compromising the faulty server(s) and potentially the entire cluster

(e.g., Bug #8). Similarly, some bugs cause databases and key-value

stores, such as LevelDB and etcd, to become inaccessible and often

unrecoverable (e.g., Bugs #4 and #9).
Data corruption and service unavailability are severe outcomes

for critical systems; one must have efficient ways to quickly repro-

duce and fix such bugs. Next, we show that the current process

for handling bugs related to lost and (linear and non-linear) torn
writes is inefficient.

2.2.1 Reproducibility. Some of the reports (five out of twelve) in-

clude instructions on how to reproduce the bug. However, the

reproduction steps are often complex to execute, time-consuming,

and require a significant amount of manual effort from users.

Finding 1. Many of these bugs are time-sensitive, occurring on

exceptional occasions and at very narrow time windows.

Namely, four of the reports suggest ungraceful server shutdowns

to simulate power crashes, such as pulling out the machine’s power

cord, and include precise instructions on the timing to do so. For

instance, Bug #3 indicates that “the crash should happen before any
sync-like call after rename("000002.dbtmp")”, and “within around few
seconds”. Such a process can easily become time-consuming, as

the user may need to repeat the same process multiple times to

correctly reproduce the bug.

Takeaway: Ideally, one would be able to reproduce a bug with-

out requiring manual steps or having to repeat the same process

multiple times.

Finding 2. The reproducibility of many bugs requires modifying

the systems’ codebases to insert small portions of code that allow

the error to manifest.

The most typical case is to add sleep calls in strategic parts of

the code (e.g., after the msync call in Bug #3; before updating the

MANIFEST file in Bug #5) to allow the developer to inject the fault

(e.g., ungraceful server shutdown) at the right time.

Takeaway: Ideally, the reproduction process should treat the

systems as opaque boxes, allowing to reproduce the bug without

requiring any codebase modifications.

Finding 3. Besides the narrow time window, many of these bugs

only manifest in very specific and complex deployments.

Some bugs are linked to the underlying file system and its config-

uration modes. As a result, the reproduction process often requires

a separate partition with a specific file system (e.g., ext4, ext3with
writeback mode). Other bugs happen only when several (nonde-

terministic) characteristics are met (e.g., when restoring a database

from a cold backup with a corrupt file, as in Bug #1).
Takeaway: One should be able to reproduce bugs without re-

quiring tailored deployments and configurations or depending on

complex preconditions (e.g., corrupted files at the time of a backup).

Finding 4. Some reports mention possible solutions to fix the

identified bugs. However, these solutions can only be effectively

validated if there is a way to reproduce the erroneous behavior.

Additionally, some systems provide mechanisms for recovering

from a corrupted state (e.g., the RepairDB function from LevelDB).

However, there are cases where these are ineffective (e.g., Bug #6).
Takeaway: Being able to reproduce bugs also helps test and im-

prove repair systems.

Summary. A non-intrusive and automated way to reproduce
storage-level data loss bugs is currently lacking and is of utmost
importance so that developers can identify and analyze problems
reported by users and validate their fixes.

2.2.2 Understanding ambiguous bugs. Many bug reports (seven out

of twelve) are ambiguous, mentioning only the problem observed

(e.g., data loss, corruption, or system unavailability) and, when

applicable, the error reported by the system, without providing

any insights on their root cause or how to reproduce them. As a

consequence, some of these reports end up being disregarded by

the development team, as there is no way to reproduce the bug and,

consequently, to understand the problem and fix it.
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Finding 5. In most cases, it is hard to associate the reported error

with the fault that originated it (i.e., lost or torn write). Yet the

type of affected files, which is a common characteristic reported by

users, can aid in determining the underlying fault.

In 9 of the bugs, the problem is related to log or metadata files.

Namely, several reports mention problems related to log files in

LevelDB (Bug #5, #6), transaction logs in ZooKeeper (Bugs #2, #7,

#8), and Write-Ahead Logs (WAL) in etcd (Bugs #9, #10). Metadata

files, such as LevelDB’s CURRENT and MANIFEST files, are also

mentioned in some bug reports (e.g., Bug #3 and #4).
Takeaway: Ideally, one should leverage this type of information

from users, test critical files against lost and torn writes, and

verify if the reported symptoms/errors are similar.

Finding 6.When reported information is ambiguous, developers

lean on external tools to understand what may have happened.

The strace tool is often used to observe system calls submitted

by the system to the kernel and help understand which system

actions could have led to the bug (e.g., Bug #5) [49]. However, strace
is only helpful for debugging the problem rather than pinpointing

the associated fault or reproducing the bug. Another tool is ALICE,

which explores and identifies system actions that may lead to lost
and torn writes (e.g., Bug #6) [37]. Although, since it is based on

system traces and file system modeling, it does not provide the

means for developers to reproduce specific bugs reported by users.

Takeaway: A tool for reproducing lost and torn write faults is

still missing. Such a tool could be combined with strace and ALICE

to provide developers a better way to explore, debug, reproduce,

and fix bugs.

Finding 7. Data loss and corruption are two common symptoms

of these bugs, but both can go unnoticed by systems (and users).

Sometimes the studied faults cause silent errors. In these cases,

the problem (e.g., data loss or corruption) is not identified or re-

ported by the system. Instead, the problem is only noticed when a

user performs specific system actions, such as listing all key-value

pairs in the database (e.g., Bugs #5 e #6).
Takeaway: When testing systems and injecting faults, one should

be able to obtain relevant information about partial or total data

loss, even when the system does not detect or report it.

Finding 8. There are similarities regarding the error messages and

the affected files mentioned in bugs across different systems.

The first similarity goes back to Finding 5, which states that these
faults typically affect log and metadata files. There are also different

bugs with similar error messages. For instance, both Bugs #9 and
#10 mention checksum errors.

Takeaway: One could leverage these patterns to test new and

unexplored systems against known bugs and failures.

Summary. A tool that allows testing systems against lost and
torn write faults and obtaining insightful information on how
errors are triggered is essential for developers to understand
ambiguous bugs reported by users and for users to provide more
detailed information when reporting newly found bugs.
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3 LAZYFS

We propose LazyFS, a software-based tool for injecting lost and
torn write faults at the file system level. The main goals of LazyFS

are to automate the current manual and intrusive process used

to reproduce bugs and aid users in testing the resiliency of their

systems while providing insightful information about the cause

and impact of observed errors.

3.1 Design goals

In compliance with the takeaways discussed in §2, LazyFS’s design

is built over the following core principles:

• Closed-box solution.Our tool is transparent to the system

being tested, avoiding any modifications to its codebase.

The only requirement is that the system is compatible with

the POSIX interface.

• Reproducible fault injection. LazyFS implements a cus-

tom page cache that enables complete control of when and

how data is synchronized to disk. This allows creating repro-

ducible fault scenarios by eliminating the nondeterminism

originated by the OS cache flushing mechanisms.
1

• Comprehensive file system behavior. LazyFS allows

mimicking different persistence properties of modern file

systems, including data durability, atomicity, and temporal

ordering of write requests.

• Informative profiling. Our tool helps users identify the

root cause of errors by precisely pinpointing data at risk of

being lost or torn under a given fault.

• Combinable design. LazyFS can be used directly by users

or as a module of complementary testing systems to expand

the range of covered faults [17].

3.2 Overview

LazyFS provides a FUSE-based file system that acts as an interme-

diary passthrough I/O layer between the System Under Test (SUT)

1
LazyFS’s goal is to assess the crash consistency of systems using the OS page cache.

Solutions that bypass the OS cache (e.g., use the O_DIRECT flag [33]) are out of scope.

5



and a regular persistent file system backend (e.g., ext4), as depicted
in Figure 3. Our solution is used as a typical POSIX file system,

supporting all the necessary system calls to operate over files and

directories’ data and metadata.

Data written by the SUT (e.g., through write or pwrite calls)

( W ) is stored in the internal Page Cache of LazyFS (W1 ). This

cache follows a similar design to the one found in modern Linux

file systems, with a single but important exception: it does not

perform background flushes to the next I/O layer. Data is flushed to

the file system backend ( F1 ) only when the SUT explicitly issues a

synchronization system call (e.g., fsync or fdatasync) ( F ).

The ability to retain written data in the cache and control when

and how to flush it is what allows LazyFS to mimic the exact be-

havior of lost and torn write faults. Users are responsible for

specifying the type, timing, and placement of faults to be injected.

According to the user’s specification, LazyFS causes full or par-

tial loss of unflushed data. By inspecting potential system errors

caused by missing data at the persistent file system backend and

combining these with the output information provided by LazyFS,

users can explore and understand the impact and errors of their

fault injection campaign.

Next, we further explain each of the main architectural compo-

nents of our solution, describe the supported fault scenarios, and

detail other features and implementation considerations.

3.3 I/O requests handling

System calls issued by the SUT are intercepted by LazyFS and

handled by two main modules.

Page Cache. The content of all write calls is buffered at the Page

Cachemodule. This cache follows the design found inmodern Linux

file systems [1, 4]. Namely, each file name is associated with an

inode, which in turn is mapped to a list of dirty pages that contain

unflushed data. Each page is divided into blocks, while the number

and size of blocks per page are configurable by users to mimic

different file system configurations.

Dirty pages are only flushed to the persistent file system backend

when: i) an fsync-related call for the file is explicitly issued by the

SUT; ii) faults for persisting partial data are injected; or iii) the Page
Cache size, defined by users, is full. In the last case, we follow a Least

Recently Used (LRU) eviction policy. To ensure data consistency,

read calls are served directly from the Page Cache when dirty

data is requested. As in other regular passthrough FUSE-based file

systems, the metadata of each file (e.g., size, permissions) is updated

and persisted by the file system backend [2, 39].

Write Handler. The Write Handler module supports the injection

of torn write faults. According to the fault injection campaign

specified by the user, the module may operate in two distinct ways.

When one wishes to test the SUT’s resiliency to a sequence of

write calls that may be torn, the module will write the content of

specific calls directly into the file system backend (e.g., first and
fourth calls from a group of four consecutive writes) (W2 ). The

content written by non-targeted writes (i.e., second and third calls

in the previous example) is buffered at the Page Cache (W1 ) and is

only flushed if the SUT explicitly issues an fsync-related call.

A slightly different approach is taken for testing systems against

large write calls (i.e., spawning across multiple pages) that may be

torn. In this case, the Write Handler first splits the targeted write

into 𝑁 parts as defined by the user. Then, the content of specific

parts (e.g., second and third) is written directly into the file system

backend. The remaining parts are only written to the Page Cache.

3.4 Fault injection

LazyFS allows users to specify faults to inject, their timing, and pa-

rameters (e.g., targeted file name and/or system call type) through a

command-based API or a configuration file. The API allows issuing

faults interactively while LazyFS and the SUT are running. These

are injected asynchronously, i.e., while the system is performing

requests to LazyFS. Thus, the fault injection timing must be con-

trolled, at runtime, by the user. The configuration file provides a

synchronous fault injection environment where users specify, a

priori, the exact timing when the fault is to be injected (e.g., inject
a torn write for the fifth write call to file 𝐴).2

User configurations and commands are parsed by theController

component, which coordinates the injection of the following faults.

Lost write(s). By clearing all content buffered at LazyFS’s Page

Cache, the Controller mimics the full loss of data written by the SUT

that was not explicitly flushed. We provide two different options

for injecting lost writes, each of which is used in this paper to

simulate scenarios where, for instance, a given server fails abruptly.

In more detail, users may issue a crash fault through an API

command or a static configuration following the same nomencla-

ture. The latter requires a certain precondition to inject the fault

(e.g., at the first write call issued for file 𝐴).

Under a crash fault, LazyFS is terminated, immediately leaving

the SUT unable to make requests or obtain responses from the

underlying file system and, eventually, leading to the SUT’s failure.

Alternatively, we provide a clear-cache command/configuration

that clears unflushed data at LazyFS’s page cache but leaves the

file system running. Therefore, the coordination of the SUT’s crash

and fault-injection timing is left to users. For frameworks that au-

tomate this coordination process, such as Jepsen, the clear-cache
option provides the means to simulate data loss without requiring

re-mounting LazyFS multiple times (Section 5.3).

Torn write(s). By instructing the Write Handler component, the

Controller can inject both linear and non-linear torn write

faults. When users want to test the resiliency of a group of writes

against these faults, they must specify the group and the specific

calls that should be written directly to the file system backend in

order to define fault injection timing. For example, for the second

group of four consecutive writes issued by the SUT, flush the first

two calls to the file system backend (linear torn write). Or, as

another example, for the first group of three consecutive writes,

flush only the third (non-linear torn write).
Alternatively, if users want to target large writes, they need

to indicate the system call to consider and which parts from its

content are to be flushed directly. For example, for the fifth write
call issued to file 𝐴, flush the first two parts (linear torn write).
A non-linear torn write fault variant could follow the same

parameters, but users would instead, for instance, configure the

second and third parts to be flushed.

2
In this example, the reproducibility of experiments still depends on the determinism

of the SUT’s workload.
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Both types of faults forcefully terminate LazyFS and can be

injected through the API or through the static configuration file

(commands/configurations torn-seq and torn-op). Also, note that
these may require some a priori knowledge from users to be injected

successfully. Namely, how can users know if the SUT is issuing

groups of consecutive writes or large writes? To aid in such a task,

our tool provides additional profiling information to help define

fault injection timing (e.g., the ordinal of the write operation), as
explained in the next section.

3.5 Output

LazyFS outputs informative details about the SUT’s actions that

may help identify possible points of fault injection and explain the

root cause for errors under lost and torn write faults.

Cache state.When total or partial data loss occurs, it is essential

to understand which file(s) content is effectively lost. To assist in

this task, immediately before injecting a fault, LazyFS registers the

file(s) blocks only residing at the Page Cache that will be lost and

outputs this information to the user.

The same information (i.e., file(s) blocks at risk of being lost)

can be obtained through LazyFS’s unsynced-data-report API

command at runtime. This feature can be used even if no faults

are being injected and is useful to understand ambiguous bugs and

to find new ones. For example, by running the system on top of

LazyFS and querying the latter for data at risk, the user can identify

potential moments for fault injection.

Requests trace. Knowing what data was lost is not always suffi-

cient to understand and find the root cause of errors. Hence, LazyFS

creates a log of all system calls issued by the SUT (e.g., open, read,
write, fsync, close, rename), along with their arguments (e.g.,
size, file path) and the moments of fault injection and activation.

By exploring this information, users can observe the flow of op-

erations and, for instance, identify large write calls, or groups of
consecutive writes, that may be at risk of being torn.

To facilitate the interpretation of logged information, LazyFS

provides a LogParser that allows: i) filtering system calls by a

specific type or file name; ii) visually representing a sequence of

system calls; iii) identifying groups of consecutive system calls

with the same type; and iii) identifying write calls that exceed a

user-configurable page size.

Figure 4 shows an example of a graph produced by LazyFS’s

LogParser. By analyzing the graph, one can observe the system

calls made by the SUT to two different files (i.e., file1.txt and

file2.txt). Further, one can easily identify two groups of calls,

one corresponding to a sequence of write and fsync calls repeated
twice ( A ) and another composed of three consecutive write calls

( B ). Such information helps determine possible fault injection

scenarios. In this case, we could configure a torn write fault to be

injected upon the first group of consecutive write calls.

3.6 Implementation

LazyFS is implemented in 2,5K lines of C++17 code and uses the

FUSE library (v3) [27]. It supports all POSIX system calls offered

by FUSE, and therefore of a traditional kernel-based file system. In

detail, our solution builds up on FUSE’s passthrough implementation

while extending the behavior of specific data (i.e., read, write,

create  path=file1.txt  mode=O_TRUNC
reps 1

create  path=file2.txt  mode=O_TRUNC
reps 1

write  path=file1.txt  size=8954 off=0
reps 1

write  path=file2.txt  size=10 off=0
reps 1

reps 2

fsync  path=file1.txt 
write  path=file1.txt 

write  path=file2.txt
reps 3

fsync  path=file2.txt
reps 1

A

B

Figure 4: Graph generated by LazyFS’s LogParser. The rep-

resentation shows system calls issued by the SUT, including

their arguments (e.g., file path, size). Consecutive calls of the
same type(s) are grouped into the same rectangle. Reps X —

indicates the number of repetitions for a group of calls.

truncate, fsync, fdatasync) and metadata (i.e., getattr, open,
create, rename, link and unlink) operations to support the page

cache, fault injection and tracing functionalities.

The static configuration file is implemented with the TOML
language. The command API is exposed by a dedicated Unix FIFO

(i.e., named pipe). Commands received at the FIFO are processed

asynchronously by a dedicated background thread, avoiding any

contention on the main flow of I/O operations issued by the SUT

and handled by LazyFS.

LazyFS’s LogParser is implemented in≈300 lines of Python3 code
and leverages the pydot module for creating graph visualizations.

3.7 Usage and Integration

We now detail how our solution can be used and integrated with

other testing frameworks.

Usage. Setting up a fault injection campaign is straightforward.

First, the user launches LazyFS by mounting it as a passthrough file

system on top of the persistent file system backend (e.g., a ext4 file
system). Then, the user runs the SUT, which should be configured

to persist data under the directory tree managed by LazyFS.

Through the static configuration file, which is specified before

bootstrapping LazyFS, or by using our fault injectionAPI at runtime,

the user can specify the fault(s) to inject. After injecting the fault,

the SUT may end up in different states, i.e., continue running, clean
shut down, or crash. In the last two cases, the user can restart the

system on top of LazyFS and check for any errors.

Integration. LazyFS can be used directly by users or integrated

within existing testing environments. To showcase the latter, we

have integrated it with Jepsen, a framework to test the reliability

of distributed systems [17]. Jepsen is used to evaluate databases,
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coordination services, and distributed queues (among others) and

was able to find and confirm multiple data consistency bugs [18].

Jepsen provides pluggable fault injection, including crashing

processes, manipulating network traffic, and introducing errors

in system clocks. We added three hundred lines of code to Jepsen

which installs, configures, and induces faults via LazyFS, using our

API for lost write faults. Support for torn write faults is deferred

for future work.

3.8 Limitations

In §5, we validate that LazyFS can be used to understand and re-

produce reported bugs and to uncover new ones. However, we

acknowledge that our tool has limitations, whose solutions are out

of scope for this paper but will be explored as future work.

Exploration of new bugs. Our solution is built with the main goal

of helping users reproduce and understand known bugs. Regardless,

as shown in §5.3, our solution can be used to find new errors.

Nonetheless, we do not claim it to be a bug exploration tool such as

ALICE [37] or Jepsen [17] that can automate bug detection. In fact,

we show that these are complementary tools that can be combined

to be more effective.

Metadata fault injection. Although LazyFS leverages file’s meta-

data (e.g., file names) for injecting faults, it does not allow assessing

the durability of metadata (e.g., whether updates to inodes are

flushed correctly to disk). As shown in the literature, these are im-

portant faults that can benefit from a reproducible approach [3, 37].

Workloads determinism. When workloads are deterministic (i.e.,
the SUT generates the same flow of system calls), LazyFS can re-

produce bugs in a deterministic way, which is the case for the bugs

considered in this paper (except for Bug #20).
However, both SUTs and test harnesses like Jepsen may run

multiple threads or introduce other forms of nondeterminism—for

instance, by generating a test workload of random transactions.

Therefore, fault injection may not reproduce the same results for

each run because LazyFS only addresses the nondeterminism of the

OS’s cache flushing mechanisms. Nevertheless, as shown in Bug #20,
when combined with testing tools like Jepsen, LazyFS increases the

probability of reproducing bugs. Finding and reproducing bugs in

nondeterministic environments is a non-trivial research challenge

that we defer to future work. Similarly, integrating LazyFSwith con-

currency debugging tools, useful for finding bugs in multi-threaded

applications, would be an interesting future research path.

4 EVALUATION

Our experimental evaluation of widely used open-source systems

has two main goals. First, we validate the benefits of using LazyFS

for reproducing and understanding the root cause of known bugs,

even when their reporting is ambiguous. For this, we use the bug

reports discussed in §2. Further, we validate LazyFS’s utility in find-

ing new vulnerabilities, either by replicating known faults in other

systems (or significantly different versions of the same system), or

through integration with other fault injection frameworks, namely

Jepsen. Our experiments answer the following questions:

• RQ1: Is LazyFS capable of reproducing bugs when the

fault’s type and steps that originated the error are known?

Table 2: Summary of the experimental evaluation, including

the tested systems and their versions, the type and number

of injected faults, the total number of tested bugs, and the

validated crash consistencymechanism. L, LT andNT denote

lost, linear torn and non-linear torn writes, respectively. C.C.
Mechs. means crash consistency mechanisms.

Faults

System Versions

L LT NT
#Bugs

#C.C.

Mechs.

PostgreSQL 12.11, 15.2 1 1 1 1

Redis 7.0.4, 7.2.3 1 1 1 1 1

ZooKeeper 3.4.8, 3.7.1 1 2 3

etcd 2.3.0, 3.4.25, 3.5, 3.6 2 4 3 7

LevelDB 1.12, 1.15, 1.23 3 1 4

PebblesDB 1.0 2 1 3

Lightning N. 0.15.1 1 1

Total 15 11 5 9 20 2

• RQ2: When the fault and reproduction steps are unknown,

can LazyFS be useful for aiding in their discovery?

• RQ3: Can LazyFS expand users’ knowledge about the im-

pact of faults on tested systems (i.e., data loss, corruption)?
• RQ4: Can LazyFS be used to uncover bugs in other systems

(or different versions of a system)?

• RQ5: Can LazyFS help correct bugs and validate mecha-

nisms intended to prevent them?

4.1 Methodology

Next we describe the methodology used in our experiments.

Environment. Experiments run on servers equipped with a 4-core

Intel Core i3-4170, 16 GiB of RAM, a 128 GiB SSD, running Ubuntu

20.04 LTS with Linux kernel 5.4.0 and the ext4 file system.

Systems. Table 2 indicates the evaluated systems and correspond-

ing versions. In addition to the six systems discussed in §2, we also

include PebblesDB [36], a key-value store built on top of LevelDB.

When reproducing known bugs, systems are configured according

to the instructions provided by the corresponding report. For new

bugs, the default system configurations are used.

The selected SUTs were chosen as they are representative data-

centric systems and databases that leverage the OS cache.

Workloads. Systems are tested with simple workloads that consist

of inserting, updating, and reading data. Further, the SUTs are

always initialized to a known state (i.e., empty or with a well-

known set of values). No workload is applied in cases where the

fault injection occurs at the systems’ initialization phase.

Fault Model. Our experiments include the three type of faults

described in §2, namely lost write(s), linear torn write(s) and
non-linear torn write(s). Our model considers the injection of

exactly one fault at each experiment.

Systems are configured to store their data under LazyFS’s direc-

tory tree, while our tool is backed up by a regular ext4 file system

backend. To ensure a reproducible setup, we configure LazyFS’s

Page Cache to have enough space to hold all unflushed data. Also,

the page and block size are configured to 4 KiB, a standard value in

many file systems [5, 29, 50].
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Observations. For each experiment, we observe how the system

behaves by analyzing its post-fault state (i.e., error/crash messages,

data loss/corruption). This information is combined with the extra

profiling output produced by LazyFS.

Reproducibility. After running each experiment (i.e., setting up
LazyFS and the SUT, running the workload, applying a given fault,

and collecting metrics), we ensure that the setup is properly cleaned

to avoid any impact in subsequent tests. In total, we conduct thirty-

eight experiments, each including at least three repetitions. Exper-

iments take on average 8.4 seconds, ranging from 1 second to 84

seconds. Notably, the small amount of time to run each experiment

shows that LazyFS provides a time-efficient approach for fault in-

jection. All steps and scripts to reproduce the findings detailed next

are available in LazyFS’s repository.

It is important to note that the methodology followed in our ex-

periment combining Jepsen and LazyFS is slightly different. Given

the exploratory nature of Jepsen, multiple tests are executed, each

running for several minutes and involving the injection of multiple

lost write faults, as further detailed in §5.3.

5 RESULTS AND TAKEAWAYS

Table 3 summarizes the twenty fault scenarios reproduced with

LazyFS. The table divides these across three different categories: five

reported bugs with clear reproduction steps, seven bugs containing

insufficient or ambiguous information on how to reproduce them,

and eight new issues found with our tool.

Next, we explain how bugs are reproduced and found with

LazyFS (§5.1, §5.2 and §5.3). Then we discuss common strategies

to tolerate and recover from lost and torn write faults (§5.4), in-
cluding experiments that validate the crash recovery mechanisms

of PostgreSQL and Redis.

5.1 Known bugs

We start by discussing our findings for bug reports that include

reproduction steps. Our fault injection strategy follows as closely

as possible the workloads and instructions provided by users. Note

that with LazyFS we do not require any source code changes or

manual intervention to mimic the faults, which are common steps

suggested in most of these reports (§2).

Bugs #3 and #5 mention data loss and missing fsync calls in Lev-

elDB, which indicates potential vulnerabilities involving lostwrite
faults. We reproduce Bug #3 by crashing LazyFS immediately before

LevelDB renames the file 000002.dbtmp. Forcefully stopping LazyFS
means that unsynced data in the file system is lost. When rebooting

LevelDB, we find that important metadata from the MANIFEST file

is lost, making the Key-Value Store (KVS) unable to boot.

For Bug #5, we also inject a lost write fault, but only after the

workload (a mix of synchronous and asynchronous PUT requests)
finishes and LevelDB shutdowns gracefully. Later, the KVS fails

to reboot, pointing out to corruption of metadata stored in the

CURRENT file. Two unexpected and interesting findings result

from this experiment. First, the error message is not accurate. By

leveraging LazyFS’s output, we find that the bug is actually caused

by data loss in other files of the KVS, specifically in 000005.sst and
000003.log files. Second, the report of Bug #5 mentions a silent

Table 3: Summary of the known, ambiguous, and new bugs

reproducedwith LazyFS, including the type of faults injected,

the impact of the fault in the system, the error observed, and

whether the bug is still present in recent versions.

System Tag Fault

I
m
p
a
c
t

Error

R
e
c
e
n
t
V
.

K
n
o
w
n

PostgreSQL #1 L C Corrupted File ✓
#3 L U Metadata Corruption ✓

LevelDB

#4,#5 L U Metadata Corruption ✓
#6 NT C Checksum Mismatch ×

A
m
b
i
g
u
o
u
s

ZooKeeper

#2 NT U Magic Number Mismatch ✓
#7 L U Unexpected Exception ✓
#8 NT U CRC Mismatch ✓

etcd #9,#10 NT, LT U CRC Mismatch ×
Redis #11 L S × ×

Lightning N. #12 L C File Reading Error ✓

N
e
w

PebblesDB

#13 L U Metadata Corruption ✓
#14 L S × ✓
#15 NT C Checksum Mismatch ✓

etcd

#16 LT U Invalid Database ✓
#17 NT U Bus Error ✓
#18 LT U Invalid File Size ✓
#19 L U Missing File ×
#20* L I × ✓

Properties

– Not Applicable

✓ Observed

× Not observed

∗ Found with Jepsen

Fault Type

L - Lost write

LT - Linear Torn write

NT - Non-linear Torn write

Impact

U - Unavailability

S - Silent Data Loss

I - Data Inconsistency
C - Data Corruption/Loss

error, which is not what we observe. In fact, the error outputted by

LevelDB is identical to the one mentioned in Bug #4.
A different approach is followed for Bugs #1 and #6, in which we

first conduct a profiling run with the SUT running on top of LazyFS

without injecting faults. The goal is to observe unsynced data and

the flow of operations issued by PostgreSQL and LevelDB to better

understand the timing and placement of faults. The workloads used

during profiling are identical to those used for fault injection.

For PostgreSQL (Bug #1), we find that the statistics used to op-

timize query plans are never explicitly flushed to the pgstat.stat
file. Although the database’s documentation states that a perma-

nent copy of the statistics is stored when the server shuts down

cleanly [43], we show that this does not hold true when a lost
write fault is injected by LazyFS.

As for LevelDB (Bug #6), when inserting a large key-value pair

(i.e., ≈44 KiB) as indicated in the report, we identify a sequence of

five consecutive write calls to the commit log file that are vulnera-

ble to torn write faults. By persisting only the first, third, and fifth

calls and crashing LazyFS before the remaining ones are flushed,

LevelDB detects data corruption through its checksum validation

mechanism. While the KVS provides a RepairDB method to amend

corrupted key-value pairs, we find that this mechanism simply

merges the partially written non-linear information, resulting in

an erroneous entry at the KVS.

5.2 Ambiguous bugs

Most of the studied bug reports do not include any reproduction

steps and provide little to no information about errors reported
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4KiB pages
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Figure 5: Lost fault in ZooKeeper’s Bug #7.

by faulty systems. We leverage the information contained in the

reports to build representative workloads and execute a profiling
run to analyze potential scenarios for fault injection.

For Bug #11, we add a new user to the Access Control List (ACL)
in Redis, while for Bug #12, we create a wallet in the Lightning

Network system. Through profiling, we identify that both systems

have cached data that is never synced explicitly to disk. We use

LazyFS to inject a lost write fault after a graceful shutdown of

these systems. After restarting Redis, the user no longer exist in

the system because data at the ACL file is silently lost. In Lightning

Network, users are unable to access the new wallet, and the system

reports read errors for several files.

For Bug #7, the problem results from a crash during Zookeeper’s

bootstrap. As exemplified in Figure 5, we reproduce the bug by

injecting a lostwrite fault and crashing LazyFS after data is written
to the transaction log file but before the corresponding fsync call.

Zookeeper is then unable to restart as a log file exists, but critical

metadata from it is missing.

Reports for Bugs #8, #9, and #10 point to torn writes as the root

cause of the anomalies. Based on this hint, we use workloads that

insert key-value pairs larger than a typical page size (i.e., 4 KiB),
and profile etcd and ZooKeeper.

We find that both systems perform sequences of write operations

followed by an fsync call in their logs. Injecting non-linear torn
write faults results in partially persisted data and makes Zookeeper

and etcd unable to restart due to checksum mismatches at their

respective transaction logs. We observe that the same error happens

for large write operations issued by etcd when these are linearly

and non-linearly torn. In ZooKeeper’s case, applying its recovery

script to fix this specific error proves to be ineffective.

Finally, by reproducing Bug #2, we find that Zookeeper is vulner-
able to non-linear torn write faults when clients connect to the

server component. At this stage, consecutive write calls are made

to the server’s transaction log file. Leaving this file with partially

written content leads to Zookeeper being unable to restart.

Testing recent versions. We replicate (i.e., use the same work-

loads and fault configurations) the aforementioned known and

ambiguous bugs on more recent and still maintained versions of

the corresponding systems. Eight of these bugs are still present in

newer versions, while only Bugs #6, #9, #10, and #11 are fixed.
Interestingly, Bug #5 still suffers from the same fault but now

results in silent data loss: LevelDB reports no error message. Bug
#7 now reports a missing snapshot file in Zookeeper. This is a

Bug #16

etcd LazyFS Cache ext4

A B C D

A B C D

Bug #17

Bug #18

write
(16 KiB)

4KiB pages

TF

member/snap/db

A B C D
member/snap/db

A B C D
member/snap/db

file in disk lost data TF - Torn fault

Figure 6: Torn write faults in etcd’s Bugs #16, #17, #18.

misleading error message as the snapshot file exists in the file

system; through LazyFS’s profiling output, we know that the root

cause is actually tied to data loss in the transaction log file.

5.3 New bugs

Next, we show how LazyFS is used to uncover new bugs. We con-

sider as new the issues found with LazyFS that were previously

unidentified. Note that old bugs still present in the systems’ recent

versions are not included in this classification.

Three strategies are employed in these experiments. First, we use

LazyFS to replicate some of the previous fault injection setups in

other (similar) systems. Then, we test systems’ versions that change

considerably the flow of I/O operations and become vulnerable to

lost and torn write faults. Finally, we combine LazyFS with other

bug exploration tools, specifically Jepsen.

Testing other systems. First, we test if bugs from LevelDB are

present in PebblesDB [36], a KVS built on top of the former.

By injecting lost write faults, i.e., before the rename call to

file 000002.dbtmp (Bug #3), and after the workload finishes and

the KVS cleanly shutdowns (Bug #5), we observe two new bugs

in PebblesDB (Bugs #13 and #14). As expected, these bugs exhibit
similar root causes and error behaviors as in LevelDB. Bug #13 leads
to metadata corruption and leaves PebblesDB unable to restart,

while Bug #14 causes silent data loss of key-value pairs.
Notably, PebblesDB changes some of the I/O patterns observed

in LevelDB. For instance, it does not perform sequences of multiple

write calls to the transaction log file (as in Bug #6). Instead, it issues
a write call sizing 12 KiB. Injecting a non-linear tornwrite fault
leads to a new data corruption bug in PebblesDB (Bug #15) [35].

Another approach to replicate bugs on similar systems is based

on Finding 5 from §2.2.2. Concretely, we test etcd’s WAL file based

on bugs from other systems that affect transaction logs (Bug #7
from Zookeeper). A lost write fault after the first write call to

the WAL triggers a new bug in etcd (Bug #19), where it fails to

restart and reports a “snapshot not found” error. Once again, this
is a misleading error as the issue’s root cause is, in fact, linked to

data loss at theWAL file.

Testing new I/O flows. Recent versions of etcd substantially

change the flow of I/O operations. Notably, we find a large write

operation of 16 KiB made at the KVS bootstrap to the file mem-
ber/snap/db. As depicted in Figure 6, by injecting different combi-

nations of torn write faults, we discover three new bugs.
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Figure 7: Split brain scenario in ectd’s Bug #20.

When the large write is divided into two parts of 8 KiB (each

part spreading across two 4 KiB cache pages) and only the first

part is persisted, etcd is unable to restart and exhibits an “invalid
database” error (Bug #16). If only the second part is persisted, etcd

fails upon restart with a “BUS error” (Bug #17 ).
We reported these two bugs to the etcd team [11]. The main-

tainers suggested fixing these by breaking down the large write

into four independent operations (i.e., aligned with the file systems’

page size) and performing an fsync call after each write. Using

LazyFS, we prove that the solution falls short of resolving the issue.

Attempting to restart etcd after dividing the large write into four

parts and persisting only the first results in a new “file size too small”
error (Bug #18), which suggests that this large write needs to be

persisted atomically [10].

Exploring bugs with LazyFS and Jepsen. To assess the use-

fulness of combining our solution with other injection tools, we

integrated LazyFS with Jepsen and tested several systems [19–21].

Jepsen is a library that generates random operations (e.g., reads
and writes) to target a specific system. While executing these oper-

ations, it injects faults such as killing nodes, altering the network

traffic, and changing clocks, among others. It also checks the op-

erations’ history to verify if certain invariants are satisfied—for

instance, if all acknowledged writes are preserved.

With LazyFS, Jepsen can simulate power failures, which are very

different from a process crash. If a node disconnects from the cluster

after committing a specific transaction, there is a possibility that

the transaction still resides in the node’s page cache and be later

flushed by the OS. However, in the event of a power failure, the

node could lose that transaction, leading to inconsistencies in the

cluster when the node reconnects.

We find Bug #20 with Jepsen using LazyFS’s ability to forget

unsynced data. Our workload involves randomly-generated trans-

actions that read or appended elements to specific keys. During

execution, lostwrite faults are injected every 15 seconds. The fault
injection process involves Jepsen forcefully stopping the SUT and

sending a clear-cache command to LazyFS.

As shown in Figure 7, these simulated crashes cause data in-

consistency within etcd’s cluster where replicas start to diverge in

the value for a given key, suggesting a split-brain scenario. More

specifically, after a given time (tSB), one of the replicas (N2) has for
the same key (87 ) the values [1,2,...], while the others have [1, 3, 4,
8, ...]. The etcd team confirmed this bug in version 3.4, but has not

yet identified a specific cause for it [9].

Confirmed bugs.With LazyFS, the development teams reproduced

and confirmed four of the new bugs: #16, #17, #18 and #20 [9–11].

5.4 Validate crash consistency mechanisms

Developers employ different strategies to protect and recover from

the lost and tornwrite faults studied in this paper. These strategies
depend on the data durability requirements of each system.

Common bug fixes.When the goal is to ensure the persistence of

all written data at a certain stage of the system’s execution, fsync
must be called for the respective files (as done to fix Bug #11).

However, as shown in the paper, this strategy is not always suffi-

cient. When a sequence of write calls or large writes exceeding the
file systems’ page size must be persisted in a time-orderly manner,

developers may need to ensure that each write operation fits on a

single file system’s page and is flushed to disk explicitly before call-

ing the next operation. While this strategy is vulnerable to linear
torn writes (i.e., under crashes, data may be partially persisted but

in an ordered fashion), it may be sufficient for some systems to

function properly and recover from this faulty scenario (Bug #6).
Amore complex approach is required when systems need atomic-

ity across a sequence of operations (e.g, multiple writes, file creation

plus writing), or for large writes. A common strategy involves writ-

ing data to a temporary file (e.g., log.tmp), explicitly syncing its data
and then renaming it (rename is an atomic operation in most POSIX

file systems) to the final file (e.g., log). This approach guarantees

that when updated, log will include all the new written content or

none of it. It is used by etcd (Bug #19) to prevent an empty WAL
file under crashes (i.e., the file is only created if the first write is
successfully persisted). Atomic update patterns are also suggested

for fixing Bugs #7 and #18.
Protection and recovery. PostgreSQL and Redis use different

mechanisms to protect and recover from torn write faults. Using
LazyFS, we conducted experiments to assess their correctness.

PostgreSQL stores information from tables and indexes in disk

pages, each with 8 KiB. To ensure their atomicity, i.e., that these do
not end up partially written and the database becomes corrupted,

it provides a configuration where pages and updates to these are

ensured to be first written to aWAL file, along with their checksums.

When a crash occurs, partially written disk pages can be fixed with

the ones written in theWAL file, while partially writtenWAL pages

are discarded due to checksum mismatch [42].

We use LazyFS to inject a non-linear torn write fault in Post-

greSQL’s write operations to its disk pages while the previous

configuration is disabled and enabled. In both cases, the database

is able to restart. However, running the PostgreSQL amcheck mod-

ule [41], when the configuration is disabled, to verify the logical

coherence of relation structures, results in a database corruption

error.

Redis provides two different crash protection mechanisms: the

periodic creation of dataset snapshots, and an Append Only File
(AOF) that logs every write operation received by the server. Using

a simple workload to insert and update a key-value pair with 10 KiB,

we observe both sequences of multiple write calls and large writes
being issued to the AOF file. When subjected to linear tornwrite
faults, Redis successfully restarts after detecting partially written

values in the file and automatically discarding them. However, for

non-linear torn write faults, Redis crashes but provides a tool

for users to identify and discard corrupted values.
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5.5 Discussion

Our experimental evaluation proves LazyFS’ usefulness for testing

systems under total and partial data loss.

Reproduction and discovery. LazyFS is useful for reproducing

known and ambiguous bugs and uncovering new issues. First, for

the bugs with clear reproduction instructions, LazyFS eliminates

error-prone and complex steps such as unplugging power cables,

modifying the system’s source code, and deploying complex setups

(RQ1). Second, LazyFS’s output helps to identify possible points

of vulnerability in systems, which allows the reproduction of bugs

when users are not sure about the steps that led to them (RQ2).

Finally, we discover new issues with LazyFS by following differ-

ent approaches that developers can also adopt to validate if their

systems are crash-consistent (RQ4).

Validation. LazyFS also helps validate the correctness of solutions

for protecting and recovering against data durability issues (RQ5).

As shown in §5.3, we test etcd team’s suggestion to fix Bugs #16 and
#17 and confirm that it does not solve the problem. Additionally,

LazyFS can be used to test crash consistency mechanisms, which

is essential to prevent broken mechanisms that are ineffective (Bug
#8) or end up worsening the nefarious effects of errors (Bug #6).
Impact and error report. Lost and torn write faults have differ-

ent impacts: unavailability, data loss, corruption, and inconsistency.

While total data loss can go unnoticed (e.g., Bug #11), partial data
loss usually causes systems’ errors (e.g., Bug #2). However, some

systems often report misleading errors, which point to a possible

root cause when the problem is actually elsewhere (Bugs #5, #7,
#19). LazyFS aids in this matter, providing additional information

that helps unveil the concrete bug causes (RQ3).

6 RELATEDWORK

Works related to LazyFS address data durability and crash consis-

tency guarantees at three different levels, i.e., the storage device,
the file system, and the applications and systems using these.

Storage devices. Zheng et al. [57] assesses the reliability of SSDs

and HDDs under faults, while Tseng et al. [52] examines post-fault

data integrity in flash memory. Both employ hardware-based fault

injection to find bugs (e.g., data corruption) at the device level.
File systems. Other solutions focus on validating the correctness

of file systems’ internals and APIs. Ferrite [3] uses formal models,

while FiSC [55] and EXPLODE [54] use model checking for testing

how different properties of file systems (e.g., I/O ordering, atomicity)
hold under faulty scenarios. EXPLODE is not limited to file systems,

as its checker can be used to validate different storage stacks (e.g.,
RAID systems, file systems, databases). B

3
[30] follows a different

approach consisting of the exhaustive generation of fault injection

workloads (i.e., including crashes after persistence operations such

as fsync) to find crash consistency bugs.

LazyFS differs from and complements theseworks by focusing on

the impact of faults at the application/system level (e.g., databases,
key-value stores, blockchains), even when file systems and devices

are considered to be bug-free.

Applications/Systems. The works that most resemble LazyFS,

goal-wise, aim at exploring data durability issues caused by erro-

neous interactions of applications and systems with the storage

stack (e.g., file system). For instance, EXPLODE’s model checker can

also be used for identifying erroneous data durability assumptions

(e.g., atomicity of write system calls) made by systems.

Zheng et al. [56] and ALICE [37] take a different approach. Both

use the record and replay strategy, which involves running a set

of representative workloads on top of the SUT and then replaying

the collected traces and exploring different fault scenarios to un-

derstand potential violations of constraints (e.g., ACID properties

of transactions in Zheng et al., lost and torn writes in ALICE).

ALICE also resorts to model checking for specifying the proper-

ties (i.e., requests ordering and atomicity) of different file system
implementations.

As explained in §2, these solutions are complementary to LazyFS.

Comprehensively exploring the behavior of systems to uncover data

durability bugs is of extreme importance (e.g., during the design and
implementation phases), but it may not be a time-efficient approach

when developers wish to reproduce bugs reported by users, which

is our tool’s main goal.

CuttleFS [45] and ErrFS [14] provide simple and efficient fault

injection mechanisms. As in LazyFS, CuttleFS implements an inter-

nal page cache, but the goal is to mimic failed fsync calls, at the file
system level, and observe how the above applications and systems

handle these. ErrFS mimics typical I/O errors reported by read and

write system calls. It is used to test the capacity of distributed

systems to recover from single-node faults.

LazyFS differs from and complements these solutions because it

injects different types of faults: lost and torn writes. Further, we

show that while targeted for single-node fault injection, our tool

can be integrated and complement distributed testing frameworks,

such as Jepsen [17].

7 CONCLUSION

This paper presents LazyFS, a new fault injection tool that enables

users to test the resiliency of their systems against lost and torn
write faults. We study twelve reported bugs from widely used sys-

tems and show that our tool is key to understanding the root cause

of ambiguous errors while automating and facilitating their repro-

duction. Further, we show that LazyFS can be used independently,

or in combination with the Jepsen framework, to find eight new

bugs in the PebblesDB and etcd systems.

LazyFS, along with all the documentation to reproduce the bugs

discussed in the paper, is available at https://github.com/dsrhaslab/

lazyfs. Our tool has been incorporated by the ectd and MongoDB

teams into their testing and debugging environments.We encourage

other developers and researchers to use LazyFS to validate the data

durability of their solutions.
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