50th International Conference on Very Large Databases

When Amnesia Strikes:
Understanding and Reproducing Data
Loss Bugs with Fault Injection

Maria Ramos, Joao Azevedo, Kyle Kingsbury*, José Pereira, Tania Esteves, Ricardo
Macedo and Joao Paulo

INESC TEC
University of Minho
Jepsen®

INESC

Crash consistency

Context

e Efficient data access and data durability are key issues for many systems
(e.g. databases, key-value stores).

® Storage systems use caches to avoid disk accesses.

® Cached data is lost in the event of a power or OS failure.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Context

e Efficient data access and data durability are key issues for many systems
(e.g. databases, key-value stores).

® Storage systems use caches to avoid disk accesses.

® Cached data is lost in the event of a power or OS failure.

Trade-off between performance and reliability

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Context

Page Cache

File System

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Context

Cached data is flushed to disk by:

® OS pressure

write (YARCD”

Page Cache

e fsync() call
File System ync()

Disk

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Context

Cached data is flushed to disk by:

® OS pressure

write (“ABCD”)

Page Cache e fsync() call
File System

Writes can be asynchronous

Disk

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Problem

® \Writes can be persisted partially and out-of-order.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Problem

® \Writes can be persisted partially and out-of-order.

Database Cache Disk

Lost write [[oo) |-

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Problem

® \Writes can be persisted partially and out-of-order.

Database Cache Disk

o, [{EE]

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency

Problem

® \Writes can be persisted partially and out-of-order.

Database Cache Disk

towrite | 1880 |—| @) |4) |
vl I S I &

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency bugs
Study

e Study of 12 reported crash consistency bugs:
o symptoms reported
o reproduction steps

o applied/suggested fixes

e Studied systems:

.etcd

éRedis

=LevelDB

PostgreSQL

LI\ Lightning Network Daemon

" ZooKeeper

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study

Bug classification

® Known bugs

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study

Bug classification

® Known bugs

® Ambiguous bugs

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

St d "oif the leveldb source code”
U y “within the next 5 seconds, switch off the machine by pulling the cord”
Bug classification e steme wit resvodue e oo

1. Use a Linux machine with ext4 (default mount options). Modify the leveldb source code so that the background
compaction thread does a big sleep() call before updating the MANIFEST file.

2. Create a LevelDB database on a partition that is unused by other applications. Design a workload that issues a lot of
asynchronous Put() requests, till the current log file gets filled up, and then issues one synchronous Put() request, such

. K n OW n b u gs that the request goes to a new log file. Run the workload on the created database.

3. As soon as the workload finishes running, within the next 5 seconds (I think you can actually do within the next 30
seconds), switch off the machine by pulling the chord. After rebooting the machine, make LevelDB open the database
and list all key-value pairs in the database.

® Ambiguous bugs

What is the expected output? What do you see instead?
Expected output: Leveldb either lists all the key-value pairs, including that of the last synchronous Put() operation.

Observed output: Leveldb does list the pair corresponding to the last synchronous operation, but does not list older pairs.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

St d /Oif h Ieveld Soure COd” S ——— e ——————
U y “within the next 5 seconds, switch off the machine by pulling the cord”
Bug classification et stepe it repraioce the oo

1. Use a Linux machine with ext4 (default mount options). Modify the leveldb source code so that the background
compaction thread does a big sleep() call before updating the MANIFEST file.

2. Create a LevelDB database on a partition that is unused by other applications. Design a workload that issues a lot of
asynchronous Put() requests, till the current log file gets filled up, and then issues one synchronous Put() request, such

. K n OW n b u gs that the request goes to a new log file. Run the workload on the created database.

3. As soon as the workload finishes running, within the next 5 seconds (I think you can actually do within the next 30
seconds), switch off the machine by pulling the chord. After rebooting the machine, make LevelDB open the database
and list all key-value pairs in the database.

® Ambiguous bugs

What is the expected output? What do you see instead?
Expected output: Leveldb either lists all the key-value pairs, including that of the last synchronous Put() operation.

Observed output: Leveldb does list the pair corresponding to the last synchronous operation, but does not list older pairs.

“After the reboot, etcd was unable to read the WAL due to crc mismatch” |

| am using etcd as a library embedded inside an application. Etcd version is 3.3.0+git, commit hash 688043a

One node had a hard reboot. Node is running on bare metal, ubuntu 16.04. Data directory resides in an lvm partition. After @ Q xiang90 closed this as completed on Jan 2, 2020
the reboot, etcd was unable to read the WAL due to crc mismatch.
walpb: crc mismatch, can only repair unexpected EOF & !«-_‘ J xiang90 commented on Jan 2, 2020
| recovered the system by deleting the etcd data directory and then adding that node back to the cluster. closing since there is no way to reproduce :(
| ran the last WAL (Il took a backup of them before deleting the data directory) through od and it showed many of the final @

entries were zeroes.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study findings

Reproducibility

® Bugs are time-sensitive (e.g., switching off machines in specific time windows)
® Modification of systems’ codebases (e.g., add sleep () call)
® Specific and complex deployments (e.g., restore from cold backup)

® | ack of means to validate fixes

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study findings

Understanding ambiguous bugs

® Sometimes dismissed by developers

® Hard to associate reported errors with type of fault
® Developers lean on external tools (e.g., strace)

® Data loss and corruption are common symptoms

® Similar error messages and affected files across different systems (e.g., checksum
errors and log files, respectively)

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Goals

¢ Non-intrusive and automated way to reproduce storage-level data loss bugs.

X code changes X power off machine X counting time X specific setup

® Provides insightful information for understanding the root cause of bugs, such as
data that can be lost or torn.

® Users can use it directly or it can be used as a module of other testing systems.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Goals

¢ Non-intrusive and automated way to reproduce storage-level data loss bugs.

X code changes X power off machine X counting time X specific setup

® Provides insightful information for understanding the root cause of bugs, such as
data that can be lost or torn.

® Users can use it directly or it can be used as a module of other testing systems.

Software-based tool for injecting lost and torn write faults at the
file system level.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

LazyFS

|) LazyFS component

ext4
------- » Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

write ()

[Write Handler J >[Page Cache J

|) LazyFS component

ext4
------- » Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

|) LazyFS component

ext4
------- » Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

write () fsync ()

= Controlling when

- data is written to disk
- allows to mimic the

| behavior of lost and

| torn writes

"~ Does not flush data

----- >[Page Cac '

|) LazyFS component

ext4
------- » Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

write () fsync ()

A 4 A 4

(Write HandleAr_J LA Page Cache]

]

fault injection

[Controller } commands
& faults

|) LazyFS component

ext4
------- » Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

write () fsync ()
; ; N
LazyFS . . —
erte Handle:_] ----- >LA Page Cache Config
fau/t injection Command
: API
[Controller } commands
& faults
|) LazyFS component
ext4
'''''' > Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

write () fsync ()
; ; >
EFxample: | LazyFS : : =
Inject a Iost.wrlt.e fault erte R B page Cache Config
' after renaming file wal | ..
fau/t injection Command
! API
[Controller } commands
& faults
|] LazyFS component
ext4
"""" > Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS

System overview

LevelDB
| System Under Test (SUT) |

SR
write () fsync ()
......... g
: = L
: - oL
_____ : Config =
I D

i

|

I " :

. fault injection Command

1 : : API

I :

- [Controller } -------- commands N
1 [——]
i

|) LazyFS component

¥ Profiling
ext4 info
------- » Control flow File System Backend

» [/O flow

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Fvaluation

Overview
- Number of Bugs in recent
b Impact :
ugs versions
PostgreSQL 1 B 1
LevelDB 4 - 2 Unavailability
ZooKeeper 3 o 3
= Data corruption/loss
Redis 1 0 . P
Lightning N. 1 1 Silent data loss
etcd 2 L 0 . .
PebblesDB 3 B E B 3 Data inconsistency
etcd 5 o 4
- 20

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Fvaluation

Overview
Number of Bugs in recent
b Impact :
ugs versions
i PostgreSQL 1 o 1
Known 2 -,
LevelDB 4 - 2 ‘
ZooKeeper 3 o 3
Redis 1 0
Lightning N. 1 1
etcd 2 o 0
PebblesDB 3 o - 3
etcd 5 o 4
- 20

Unavailability
Data corruption/loss

Silent data loss

Data inconsistency

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Fvaluation

Overview

Number of
bugs

Bugs In recent
versions

PostgreSQL

1

1

Known

LevelDB

i ZooKeeper

Redis

Amblguous i Lightning N.

PebblesDB

etcd

4
3
1
1
2
3
5

Unavailability
Data corruption/loss

Silent data loss

Data inconsistency

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Fvaluation

Overview

Number of
bugs

Impact

Bugs In recent
versions

PostgreSQL

1

1

Known LevelDB

ZooKeeper

Redis

Amblguous Lightning N.

etcd
New | PebblesDB

etc

4
3
1
1
2
3
5

N WwWliOoO | —=|O|WwW]lNo

Unavailability
Data corruption/loss

Silent data loss

Data inconsistency

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Fvaluation

Overview

Number of
bugs

PostgreSQL

Impact

Bugs In recent
versions

1

1

Known LevelDB

ZooKeeper

Redis

Ambiguous

Lightning N.

etcd
New PebblesDB

etcd

Gl Wi | —m | =W N

A WO | = O |WlDN

Unavailability
Data corruption/loss

Silent data loss

Data inconsistency

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Fvaluation

Overview
- Number of Bugs in recent
b Impact :
ugs versions
PostgreSQL 1 L 1
Known LevelDB 4 B B 2 Unavailability
ZooK 3 3
20 efeper _ Data corruption/loss
Ambi Redis 1 B 0
MDISUOUS | Lightning N. 1 1 Silent data loss
etcd 2 o 0
New PebblesDB 3 B E B 3 Data inconsistency
etcd 5 o 4
20 +2 crash consistency mechanisms

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

What steps will reproduce the problem?

1. Use a separate partition with the ext3 file system under the writeback mode (mount -0 data=writeback), for the
database. No other background process should be writing to the file system; this lets us easily simulate the timing
interleaving necessary for the bug to happen.

2. The EmitPhysicalRecord function in log_writer.cc has a Flush() call on the log file (line 94 in version 1.15). Just before
that call, add an fdatasync() to the log file. This is again for the timing interleaving.

3. Insert a 45000 characters-long key-value pair, using an asynchronous Put(), and then do an infinite loop.

4. Wait for 5 seconds, and pull off the power chord (the power chord should be pulled back between the 5th and the 25th
second).

5. After rebooting the machine, re-open the database with paranoid checksums, run RepairDB, and try reading the values.

What is the expected output? What do you see instead?
The inserted value, or an empty database, is expected. A corrupted value is seen.

What version of the product are you using? On what operating system?
LevelDB 1.15, on Ubuntu 12.04.

1. Use ext3 file system in writeback mode in a separate partition.
2. Add fsync () in function of source code.
1 3. Insert a 45000 characters-long key-value pair and do an infinite loop.
1 4. Wait 5 seconds and pull off the power chord.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

Level DB LazyFS cache ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

Level DB LazyFS cache ext4
WAL WAL

(1) write WAL

(2) write WAL
(3) write WAL
(4) write WAL
(5) write WAL

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

Level DB LazyFS cache ext4
WAL

(1) write WAL

(2) write WAL

(3) write WAL

(4) write WAL

(5) write WAL

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

Level DB LazyFS cache ext4

(1) write WAL I value I
(2) write WAL -I value]

(3) write WAL -I value

(4) write WAL -I value]

(5) write WAL -I r

I value I

NLTW

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs

ZooKeeper Bug #7

® Fails to start with et o file.
t® ZooKeeper server killed after creating log

file but before flushing log header.

4" ZooKeeper / ZOOKEEPER-2332
a8 Zookeeper failed to start for empty txn log

> Details

v Description

We found that the zookeeper server with version 3.4.6 failed to start for there is a empty txn log in log dir.
| think we should skip the empty log file during restoring the datatree.
Any suggestion?

v Shaohui Liu added a comment - 07/Dec/15 03:47

rgs
how did the empty txnlog happened in the first place?

The zookeeper server was Killed after creating a new txn log file before flushing the log header to the log.
So a txn log is left without a valid header and makes the the zookeeper server fail to start.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs

ZooKeeper Bug #7

ZooKeeper LazyFS cache ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs

ZooKeeper Bug #7

ZooKeeper LazyFS cache ext4

(1) create WAL >|:|

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs

ZooKeeper Bug #7

ZooKeeper LazyFS cache ext4
WAL

(1) create WAL >|:|
WAL

) write]

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs

ZooKeeper Bug #7

ZooKeeper LazyFS cache

(1) create WAL

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs

etcd Bug #20

® Jepsen is a framework to test the reliability of distributed systems.

® |ntegration with LazyFS finds a split-brain scenario in etcd.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs

etcd Bug #20

® Jepsen is a framework to test the reliability of distributed systems.

® |ntegration with LazyFS finds a split-brain scenario in etcd.

NT

N2
N3

>
time

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs

etcd Bug #20

® Jepsen is a framework to test the reliability of distributed systems.

® |ntegration with LazyFS finds a split-brain scenario in etcd.

>

{SB time

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs

etcd Bug #20

® Jepsen is a framework to test the reliability of distributed systems.

® |ntegration with LazyFS finds a split-brain scenario in etcd.

vi O 0E0EE

v D DE (&
N3 (0 nannnen

tSIB time

>

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Conclusion

e \Widely used systems are still affected by crash consistency bugs.
® | azyFS provides a way to reproduce bugs caused by lost and torn writes.
® |azyFS helps to understand the root cause of bugs.

® [azyFS helps to validate crash consistency mechanisms.

Known systems that used LazyFS:

¢ PostgreSQL ¢ etcd ¢ MongoDB

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

When Amnesia Strikes:
Understanding and Reproducing Data
Loss Bugs with Fault Injection

O dsrhaslab/lazyfs
maria.j.ramos@inesctec.pt

