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•Efficient data access and data durability are key issues for many systems  
(e.g. databases, key-value stores). 

•Storage systems use caches to avoid disk accesses.  

•Cached data is lost in the event of a power or OS failure.
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•Efficient data access and data durability are key issues for many systems  
(e.g. databases, key-value stores). 

•Storage systems use caches to avoid disk accesses.  

•Cached data is lost in the event of a power or OS failure.

Crash consistency
Context

Trade-off between performance and reliability
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Crash consistency
Context

Cached data is flushed to disk by:

• OS pressure

• fsync() call 
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Crash consistency
Context

Cached data is flushed to disk by:

• OS pressure

• fsync() call 
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Crash consistency
Problem 

• Writes can be persisted partially and out-of-order.
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Crash consistency
Problem 

• Writes can be persisted partially and out-of-order.
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Crash consistency bugs
Study

• Study of 12 reported crash consistency bugs: 

symptoms reported 

reproduction steps 

applied/suggested fixes 

• Studied systems:  

  etcd                LevelDB                 Lightning Network Daemon     

       Redis               PostgreSQL            ZooKeeper
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Study 
Bug classification

• Known bugs
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• Ambiguous bugs

“modify the leveldb source code” 
“within the next 5 seconds, switch off the machine by pulling the cord”
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Study 
Bug classification

• Known bugs

6

• Ambiguous bugs

“modify the leveldb source code” 
“within the next 5 seconds, switch off the machine by pulling the cord”

“After the reboot, etcd was unable to read the WAL due to crc mismatch”
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Study findings
Reproducibility

• Bugs are time-sensitive (e.g., switching off machines in specific time windows) 

• Modification of systems’ codebases (e.g., add sleep() call) 

• Specific and complex deployments (e.g., restore from cold backup) 

• Lack of means to validate fixes
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Study findings
Understanding ambiguous bugs

• Sometimes dismissed by developers  

• Hard to associate reported errors with type of fault  

• Developers lean on external tools (e.g., strace)  

• Data loss and corruption are common symptoms 

• Similar error messages and affected files across different systems (e.g., checksum 
errors and log files, respectively)
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Goals
• Non-intrusive and automated way to reproduce storage-level data loss bugs. 
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✗ code changes ✗ power off machine ✗ counting time ✗ specific setup

• Provides insightful information for understanding the root cause of bugs, such as 
data that can be lost or torn. 

• Users can use it directly or it can be used as a module of other testing systems. 
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Goals
• Non-intrusive and automated way to reproduce storage-level data loss bugs. 

 

9

✗ code changes ✗ power off machine ✗ counting time ✗ specific setup

• Provides insightful information for understanding the root cause of bugs, such as 
data that can be lost or torn. 

• Users can use it directly or it can be used as a module of other testing systems. 

LazyFS

Software-based tool for injecting lost and torn write faults at the 
file system level.
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Evaluation
Overview
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Number of 
bugs

Impact
Bugs in recent 

versions

PostgreSQL 1 1

LevelDB 4 2

ZooKeeper 3 3

Redis 1 0

Lightning N. 1 1

etcd 2 0

PebblesDB 3 3

etcd 5 4

Total 20
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Known bug
LevelDB Bug #6

1. Use ext3 file system in writeback mode in a separate partition. 
2. Add fsync() in function of source code. 
3. Insert a 45000 characters-long key-value pair and do an infinite loop. 
4. Wait 5 seconds and pull off the power chord.

15
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LevelDB Bug #6
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Ambiguous bugs
ZooKeeper Bug #7
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• Fails to start with empty log file. 
• ZooKeeper server killed after creating log 

file but before flushing log header.
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Ambiguous bugs
ZooKeeper Bug #7
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Ambiguous bugs
ZooKeeper Bug #7
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Ambiguous bugs
ZooKeeper Bug #7
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New bugs
etcd Bug #20

• Jepsen is a framework to test the reliability of distributed systems. 

• Integration with LazyFS finds a split-brain scenario in etcd.

19
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Conclusion
• Widely used systems are still affected by crash consistency bugs. 

• LazyFS provides a way to reproduce bugs caused by lost and torn writes. 

• LazyFS helps to understand the root cause of bugs. 

• LazyFS helps to validate crash consistency mechanisms.

20

Known systems that used LazyFS: 
 
                     ◆ PostgreSQL           ◆ etcd           ◆ MongoDB
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