
When Amnesia Strikes:
Understanding and Reproducing Data
Loss Bugs with Fault Injection
Maria Ramos, João Azevedo, Kyle Kingsbury*, José Pereira, Tânia Esteves, Ricardo
Macedo and João Paulo

INESC TEC
University of Minho
Jepsen*

50th International Conference on Very Large Databases

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

•Efficient data access and data durability are key issues for many systems
(e.g. databases, key-value stores).

•Storage systems use caches to avoid disk accesses.

•Cached data is lost in the event of a power or OS failure.

Crash consistency
Context

2

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

•Efficient data access and data durability are key issues for many systems
(e.g. databases, key-value stores).

•Storage systems use caches to avoid disk accesses.

•Cached data is lost in the event of a power or OS failure.

Crash consistency
Context

Trade-off between performance and reliability

2

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency
Context

3

System

File System
Page Cache

Disk

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency
Context

Cached data is flushed to disk by:

• OS pressure

• fsync() call

3

System

File System
Page Cache

write(“ABCD”)

AB CD

Disk AB CD

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency
Context

Cached data is flushed to disk by:

• OS pressure

• fsync() call

3

System

File System
Page Cache

write(“ABCD”)

AB CD

Writes can be asynchronous
Disk AB CD

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency
Problem

• Writes can be persisted partially and out-of-order.

4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency
Problem

• Writes can be persisted partially and out-of-order.

4

ABCD AB CD AB CD

Database Cache Disk

Lost write

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency
Problem

• Writes can be persisted partially and out-of-order.

4

ABCD AB CD AB CD

ABCD AB CD CDAB

Database Cache Disk

Lost write

Linear
torn write

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency
Problem

• Writes can be persisted partially and out-of-order.

4

ABCD AB CD AB CD

ABCD AB CD CD

ABCD AB CD AB

AB

CD

Database Cache Disk

Lost write

Linear
torn write

Non-linear
torn write

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Crash consistency bugs
Study

• Study of 12 reported crash consistency bugs:

symptoms reported

reproduction steps

applied/suggested fixes

• Studied systems:

 etcd LevelDB Lightning Network Daemon

 Redis PostgreSQL ZooKeeper

5

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study
Bug classification

• Known bugs

6

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study
Bug classification

• Known bugs

6

• Ambiguous bugs

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study
Bug classification

• Known bugs

6

• Ambiguous bugs

“modify the leveldb source code”
“within the next 5 seconds, switch off the machine by pulling the cord”

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study
Bug classification

• Known bugs

6

• Ambiguous bugs

“modify the leveldb source code”
“within the next 5 seconds, switch off the machine by pulling the cord”

“After the reboot, etcd was unable to read the WAL due to crc mismatch”

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study findings
Reproducibility

• Bugs are time-sensitive (e.g., switching off machines in specific time windows)

• Modification of systems’ codebases (e.g., add sleep() call)

• Specific and complex deployments (e.g., restore from cold backup)

• Lack of means to validate fixes

7

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Study findings
Understanding ambiguous bugs

• Sometimes dismissed by developers

• Hard to associate reported errors with type of fault

• Developers lean on external tools (e.g., strace)

• Data loss and corruption are common symptoms

• Similar error messages and affected files across different systems (e.g., checksum
errors and log files, respectively)

8

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Goals
• Non-intrusive and automated way to reproduce storage-level data loss bugs.

9

✗ code changes ✗ power off machine ✗ counting time ✗ specific setup

• Provides insightful information for understanding the root cause of bugs, such as
data that can be lost or torn.

• Users can use it directly or it can be used as a module of other testing systems.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Goals
• Non-intrusive and automated way to reproduce storage-level data loss bugs.

9

✗ code changes ✗ power off machine ✗ counting time ✗ specific setup

• Provides insightful information for understanding the root cause of bugs, such as
data that can be lost or torn.

• Users can use it directly or it can be used as a module of other testing systems.

LazyFS

Software-based tool for injecting lost and torn write faults at the
file system level.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

10

System Under Test (SUT)

File System Backend

LazyFS

LazyFS component

I/O flow

Control flow

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

10

System Under Test (SUT)

File System Backend

Write Handler Page Cache

LazyFS

write()

LazyFS component

I/O flow

Control flow

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

11

System Under Test (SUT)

File System Backend

Write Handler Page Cache

LazyFS

write()

LazyFS component

I/O flow

Control flow

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

11

System Under Test (SUT)

File System Backend

Write Handler Page Cache

LazyFS

write() fsync()

LazyFS component

I/O flow

Control flow

Controlling when
data is written to disk
allows to mimic the
behavior of lost and
torn writes

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

12

System Under Test (SUT)

File System Backend

Write Handler Page Cache

Controller

LazyFS

write() fsync()

fault injection

commands
& faults

LazyFS component

I/O flow

Control flow

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

12

System Under Test (SUT)

File System Backend

Write Handler Page Cache

Controller

LazyFS

write() fsync()

fault injection

commands
& faults

Config

Command
API

LazyFS component

I/O flow

Control flow

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

12

System Under Test (SUT)

File System Backend

Write Handler Page Cache

Controller

LazyFS

write() fsync()

fault injection

commands
& faults

Config

Command
API

LazyFS component

I/O flow

Control flow

Example:
Inject a lost write fault
after renaming file wal

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

LazyFS
System overview

13

System Under Test (SUT)

File System Backend

Write Handler Page Cache

Controller

Lo
gP

ar
se

r

LazyFS

write() fsync()

fault injection

commands
& faults

Config

Command
API

Profiling
info

outputs

LazyFS component

I/O flow

Control flow

LevelDB

ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Evaluation
Overview

14

Number of
bugs

Impact
Bugs in recent

versions

PostgreSQL 1 1

LevelDB 4 2

ZooKeeper 3 3

Redis 1 0

Lightning N. 1 1

etcd 2 0

PebblesDB 3 3

etcd 5 4

Total 20

■
Unavailability

Data corruption/loss

Silent data loss

Data inconsistency

13

4

2

1

■
■

■
■■

■

■
■

■

■■

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Evaluation
Overview

14

Number of
bugs

Impact
Bugs in recent

versions

PostgreSQL 1 1

LevelDB 4 2

ZooKeeper 3 3

Redis 1 0

Lightning N. 1 1

etcd 2 0

PebblesDB 3 3

etcd 5 4

Known

Total 20

■
Unavailability

Data corruption/loss

Silent data loss

Data inconsistency

13

4

2

1

■
■

■
■■

■

■
■

■

■■

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Evaluation
Overview

14

Number of
bugs

Impact
Bugs in recent

versions

PostgreSQL 1 1

LevelDB 4 2

ZooKeeper 3 3

Redis 1 0

Lightning N. 1 1

etcd 2 0

PebblesDB 3 3

etcd 5 4

Known

Ambiguous

Total 20

■
Unavailability

Data corruption/loss

Silent data loss

Data inconsistency

13

4

2

1

■
■

■
■■

■

■
■

■

■■

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Evaluation
Overview

14

Number of
bugs

Impact
Bugs in recent

versions

PostgreSQL 1 1

LevelDB 4 2

ZooKeeper 3 3

Redis 1 0

Lightning N. 1 1

etcd 2 0

PebblesDB 3 3

etcd 5 4

Known

Ambiguous

New

Total 20

■
Unavailability

Data corruption/loss

Silent data loss

Data inconsistency

13

4

2

1

■
■

■
■■

■

■
■

■

■■

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Evaluation
Overview

14

Number of
bugs

Impact
Bugs in recent

versions

PostgreSQL 1 1

LevelDB 4 2

ZooKeeper 3 3

Redis 1 0

Lightning N. 1 1

etcd 2 0

PebblesDB 3 3

etcd 5 4

Known

Ambiguous

New

Total 20

■
Unavailability

Data corruption/loss

Silent data loss

Data inconsistency

13

4

2

1

■
■

■
■■

■

■
■

■

■■

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Evaluation
Overview

14

Number of
bugs

Impact
Bugs in recent

versions

PostgreSQL 1 1

LevelDB 4 2

ZooKeeper 3 3

Redis 1 0

Lightning N. 1 1

etcd 2 0

PebblesDB 3 3

etcd 5 4

Known

Ambiguous

New

Total 20

■

+2 crash consistency mechanisms

Unavailability

Data corruption/loss

Silent data loss

Data inconsistency

13

4

2

1

■
■

■
■■

■

■
■

■

■■

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

1. Use ext3 file system in writeback mode in a separate partition.
2. Add fsync() in function of source code.
3. Insert a 45000 characters-long key-value pair and do an infinite loop.
4. Wait 5 seconds and pull off the power chord.

15

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

16

LevelDB LazyFS cache ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

16

(1) write WAL

(2) write WAL

(3) write WAL

(4) write WAL

(5) write WAL

WALWAL

LevelDB LazyFS cache ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

16

(1) write WAL

(2) write WAL

(3) write WAL

(4) write WAL

(5) write WAL

value

value

WALWAL

LevelDB LazyFS cache ext4

value

value

value

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Known bug
LevelDB Bug #6

16

(1) write WAL

(2) write WAL

(3) write WAL

(4) write WAL

(5) write WAL

value

value

value

value

value

value

value

WALWAL

LevelDB LazyFS cache ext4

value

value

value

NL TW

NL TW→Non-Linear Torn Write

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs
ZooKeeper Bug #7

17

• Fails to start with empty log file.
• ZooKeeper server killed after creating log

file but before flushing log header.

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs
ZooKeeper Bug #7

18

ZooKeeper LazyFS cache ext4

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs
ZooKeeper Bug #7

18

(1) create WAL

ZooKeeper LazyFS cache ext4

WAL

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs
ZooKeeper Bug #7

18

(1) create WAL

(2) write header

ZooKeeper LazyFS cache ext4

WAL

WAL

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Ambiguous bugs
ZooKeeper Bug #7

18

(1) create WAL

(2) write

(3) fsync

LW

header

header

ZooKeeper LazyFS cache ext4

WAL

WAL

WAL

LW→Lost Write

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs
etcd Bug #20

• Jepsen is a framework to test the reliability of distributed systems.

• Integration with LazyFS finds a split-brain scenario in etcd.

19

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs
etcd Bug #20

• Jepsen is a framework to test the reliability of distributed systems.

• Integration with LazyFS finds a split-brain scenario in etcd.

19

time

N1

N2

N3

etcd key=87

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs
etcd Bug #20

• Jepsen is a framework to test the reliability of distributed systems.

• Integration with LazyFS finds a split-brain scenario in etcd.

19

time

N1

N2

N3

tSB

etcd key=87

1

1

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

New bugs
etcd Bug #20

• Jepsen is a framework to test the reliability of distributed systems.

• Integration with LazyFS finds a split-brain scenario in etcd.

19

time

N1

N2

N3

12

tSB

etcd key=87

21

1 3 4 8

1 2

1 3 4 8 10 13 19

1

1

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Conclusion
• Widely used systems are still affected by crash consistency bugs.

• LazyFS provides a way to reproduce bugs caused by lost and torn writes.

• LazyFS helps to understand the root cause of bugs.

• LazyFS helps to validate crash consistency mechanisms.

20

Known systems that used LazyFS:

 ◆ PostgreSQL ◆ etcd ◆ MongoDB

When Amnesia Strikes:
Understanding and Reproducing Data
Loss Bugs with Fault Injection

 maria.j.ramos@inesctec.pt

 dsrhaslab/lazyfs

