Check for
Updates

SoTERIA: Preserving Privacy in Distributed Machine Learning

Claudia Brito
INESC TEC & University of Minho
Braga, Portugal
claudia.v.brito@inesctec.pt

Rui Oliveira
INESC TEC & University of Minho
Braga, Portugal
rcmo@inesctec.pt

ABSTRACT

We propose SOTERIA, a system for distributed privacy-preserving
Machine Learning (ML) that leverages Trusted Execution Environ-
ments (e.g. Intel SGX) to run code in isolated containers (enclaves).
Unlike previous work, where all ML-related computation is per-
formed at trusted enclaves, we introduce a hybrid scheme, com-
bining computation done inside and outside these enclaves. The
conducted experimental evaluation validates that our approach re-
duces the runtime of ML algorithms by up to 41%, when compared
to previous related work. Our protocol is accompanied by a security
proof, as well as a discussion regarding resilience against a wide
spectrum of ML attacks.

CCS CONCEPTS

« Security and privacy — Distributed systems security;

KEYWORDS
Apache Spark, Machine Learning, Intel SGX, Privacy-Preserving

ACM Reference Format:

Claudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, and Jodo Paulo.
2023. SOTERIA: Preserving Privacy in Distributed Machine Learning. In
Proceedings of ACM SAC Conference (SAC’23). ACM, New York, NY, USA,
Article 4, 8 pages. https://doi.org/10.1145/3555776.3578591

1 INTRODUCTION

Outsourcing Machine Learning (ML) data storage and computation
to third-party services (e.g., cloud computing) leaves users vulnera-
ble to attacks that may compromise the integrity and confidentiality
of their data. Indeed, the ML pipeline encompasses several stages,
both for model training and inference, in which users’ data is known
to be susceptible to different attacks such as adversarial attacks,
model extraction, and inversion, and reconstruction attacks [13, 28].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9517-5/23/03...$15.00
https://doi.org/10.1145/3555776.3578591

Pedro Ferreira
INESC TEC & Faculty of Sciences,
University of Porto
Porto, Portugal
pferreira@ipatimup.pt

135

Bernardo Portela
INESC TEC & Faculty of Sciences,
University of Porto
Porto, Portugal
bernardo.portela@fc.up.pt

Joao Paulo
INESC TEC & University of Minho
Braga, Portugal
joao.t.paulo@inesctec.pt

Recent works have addressed these attacks with solutions based
on homomorphic encryption or secure multi-party computation
schemes. However, these cryptographic schemes impose a signifi-
cant performance toll that restricts their applicability to practical
scenarios [3]. To circumvent this performance penalty, another line
of research is that of exploring hardware technologies enabling
Trusted Execution Environments (TEEs), such as Intel SGX [21].
These technologies allow the execution of code within isolated
processing environments (i.e., enclaves) where data can be securely
handled in its original form (i.e., plaintext) at untrusted servers.

The latter approach typically deploys full ML workloads inside
TEEs [15, 16]. However, as the amount of computational and I/O
operations performed at the enclaves increases, the performance
of ML training and inference is noticeably affected by hardware
limitations, limiting the design’s applicability in practice [11].

This paper builds upon the idea that ML runtime performance
could be improved by reducing the number of operations done at
enclaves. In fact, this insight is backed up by previous work [19, 32]
exploring the partitioning of computation across trusted and un-
trusted environments, but in contexts (e.g., SQL processing, MapRe-
duce, distributed coordination) with different security requirements
and processing logic than the ones found for ML workloads.

Therefore, the key challenge addressed by this paper is to under-
stand and define the set of ML operations to run inside/outside TEEs.
Ideally, these operations should significantly reduce the enclaves’
overall computational and I/O load for different ML workloads; and
doing so should not leak critical sensitive information during the
execution of ML workloads.

Our reasoning is twofold: i.) the majority of current attacks on
the ML pipeline is only successful if the attacker has some knowl-
edge about the datasets and/or models being used [6, 13]; and ii.)
studies show that such knowledge cannot be inferred from the
information leaked by statistical operations, such as the calculation
of confidence results, table summaries, ROC/AUC curves, and prob-
ability distributions for classes [8]. As a result, these operations are
ideal candidates to be offloaded from enclaves. We support these
claims by analyzing the security and performance implications of
different ML workloads and attacks.

Thus, we propose SOTERIA, an open-source system for distributed
privacy-preserving ML (https://github.com/claudiavmbrito/soteria)
that leverages the scalability and reliability provided by Apache
Spark and its ML library (MLIib). Unlike previous solutions [14, 25],

https://doi.org/10.1145/3555776.3578591
https://doi.org/10.1145/3555776.3578591
https://github.com/claudiavmbrito/soteria
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555776.3578591&domain=pdf&date_stamp=2023-06-07

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia

SOTERIA supports a wide variety of ML algorithms without chang-
ing how users build and run these within Spark. It ensures that
critical operations, which enable existing attacks to reveal sen-
sitive information from ML datasets and models, are exclusively
performed in secure enclaves. This means that the sensitive infor-
mation being processed only exists in plaintext when inside the
enclave, being encrypted in the remainder data flow (e.g., network,
storage). This solution enables robust security guarantees, ensuring
data privacy during ML training and inference.

SoTERIA introduces a new computation partitioning scheme
for Apache Spark’s MLIib, SOTERIA-P, that offloads non-critical
statistical operations from the trusted enclaves to untrusted envi-
ronments. SOTERIA-P is accompanied by a formal security proof
for how data remains private during ML workloads and an anal-
ysis of how this guarantee ensures resilience against various ML
attacks. Furthermore, SOTERIA offers a baseline scheme, SOTERIA-B,
where all ML operations are done inside trusted enclaves without a
fine-grained differentiation between critical and non-critical opera-
tions. SOTERIA-B provides a performance and security baseline for
comparison against our new partitioned scheme.

We compare experimentally both approaches with a non-secure
deployment of Apache Spark and a state-of-the-art solution, namely
SGX-Spark [14]. Our experiments, resorting to the HiBench bench-
mark [17] and including four different ML algorithms, show that
SoTERIA-P, while considering a larger subset of ML attacks, reduces
training time by up to 41% for Gradient Boosted Trees workloads
and up to 4.3 hours for Linear Regression workloads, when com-
pared to SGX-Spark. Also, when compared to SOTERIA-B, SOTERIA-P
reduces execution time by up to 37% for the Gradient Boosted Trees
workloads and up to 3.3 hours for the Linear Regression workloads.

2 BACKGROUND
2.1 Apache Spark and MLIlib

Apache Spark is a distributed cluster computing framework that
supports ETL, analytical, ML, and graph processing over large vol-
umes of data. Spark follows a Master/Workers distributed architec-
ture and can be deployed on a cluster of servers in the cloud that
may access several data sources (e.g., HBase, HDFS) for reading the
data to be processed and storing the corresponding output and logs
[31]. Spark is able to perform most of the computation in-memory,
thus promoting better performance for data-intensive applications
when compared to Hadoop’s MapReduce.

The MLIib library [22] enables Spark users to build end-to-end
ML workflows. These workflows are divided into 5 stages (Figure 1).
The first stage goes from the collection of data to its treatment. In
the second stage, data is split into train and test datasets, and a
given ML algorithm is chosen. The third stage is the training stage,
where data is iterated to deliver an optimized trained model at the
fourth stage. In the fifth stage, the trained model can then be saved
(persisted) and loaded (accessed) for inference purposes.

2.2 Intel Software Guard Extensions

Intel SGX provides a set of new instructions, available on Intel
processors, that applications can use to create trusted memory
regions. These regions (enclaves) are isolated from any other code
on the host system, preventing other processes, including those

136

Claudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, and Joao Paulo

Trusted Site . Untrusted Site

Inference

-0—
—Q0-

Data Source : Data Treatment Training Dataset Trained Model

@%‘f@%-o_

Reconstruction Attacks Mode! EXraction embership Inference
Model Inversion

L ~ %’/ A ~)ﬁ/ U ~ J

4th stage

Adversarial Samples

1st stage 2nd stage 3rd stage 5th stage

Figure 1: ML pipeline and known attack vectors.

with higher privilege levels (such as the host OS, hypervisor, and
BIOS), from accessing their content [21, 23].

Since SGX protects code and data from privileged access, sensi-
tive plaintext data can be processed at the enclave without compro-
mising its privacy. Thus, TEEs outperform typical traditional cryp-
tographic computational techniques (e.g., searchable encryption,
homomorphic encryption) [23]. Even though the second generation
of SGX has improved the size of the protected memory region, it
still defines the Enclave Page Cache (EPC) to 128MB per CPU [12].
When such limitation is met, memory swapping occurs, which is a
performance-costing mechanism [11]. Thus, SGX-based solutions
must balance the number of I/O operations and the amount of data
handled by enclaves as well as the Trusted Computing Base (TCB)
to optimize performance.

We chose SGX over other TEEs in this paper because of its broad
availability and use in academia [19, 32] and industry [4].

3 THREAT MODEL AND ATTACKS
3.1 SoTERIA Threat Model

SoTERIA enables the secure outsourcing of ML training and infer-
ence workloads. These are scenarios where the data owner holds
sensitive information (a private dataset and/or model) and wants to
perform some ML workload on it using an external cloud provider.

Our deployment model is depicted in Figure 2 and is as follows.
The client (data owner) will be trusted and will provide input for
ML tasks Then, a Spark Master node and N Worker nodes will be
deployed in an untrusted environment (cloud provider), equipped
with Intel SGX technology. Externally, we also consider a distributed
data storage backend. The protocol assumes an implicit setup where
the client stores its input data securely within this backend, which
is also considered untrusted throughout the protocol execution.

We consider semi-honest adversaries, which means that security
is defined according to a threat that attempts to break the confiden-
tiality of data and model, but that will not actively deviate from the
protocol specification. This is a good fit for cloud-based systems,
where data breaches are common and malicious entities can read
internal processing data temporarily [18]. In brief, our security goal
is to allow clients to provide input data for training and inference
in a way that is not vulnerable to breaches in confidentiality.

3.2 ML Workflow Attacks

Throughout the paper, we will follow the black-box setting of [9].
Essentially, when we state that an adversary has black-box access to
amodel, it means it can query any input x and receive the predicted
class probabilities P(y|x) for all classes y. This allows the adversary

SOTERIA: PPML on Apache Spark

Table 1: Comparison between state-of-the-art solutions and
SoTERIA regarding the safety against ML attacks.

Systems

Attacks [15] [16] [25] [14]* SoTERIA
Gradient-based X X vV X v
Adversarial Score-based X X v X v
Transfer-based X X /X v
Decision-based X X VX v
Equation-solving v v X V/ v
. Path-finding o/ XX 4
Model Extraction Class-only /S v X X v
DFKD o /X 7 v
Model Inversion v /7 v v
Reconstruction Attacks v v v / v
Membership Inference X X X X v

*Data encryption is not provided on the open-source version.
v - Protected; X - Non-protected; ? - Not disclosed.

to interact with the trained model without retrieving additional
information, e.g. computing the gradients. Ensuring security against
attacks on this pipeline entails including countermeasures against
a wide array of attack vectors, as depicted in Figure 1.
Adversarial attacks. These attacks are characterized by the in-
jection of malicious data samples, to manipulate the model and to
disclose information about the original data being used for training
or inference purposes. Successful attacks in the literature require
the attacker to have direct access to the training dataset (data poi-
soning, transfer-based, and gradient-based attacks), the model and
gradients (gradient-based attacks), or the full results and class prob-
abilities (score-based attacks) [6, 20].

Model Extraction. These attacks aim at learning a close approxi-
mation to an objective function of the trained model. This approxi-
mation is based on the exact confidence values and response labels
obtained by inference. To attain the desired output, the attacker
must know the dimension of the original training dataset (equation-
solving attacks), the dimension of the decision trees, data features
and the final confidence values (path-finding attacks), or hold real
samples from the training dataset (class-only attacks and data-free
knowledge distillation (DFKD)) [28, 29].

Model Inversion and Membership Inference. These attacks tar-
get the recovery of values from the training dataset. Both consider
an adversary that queries the ML system in a black-box fashion
and both are currently based on ML services, which define publicly
their trained models and the confidence values. In model inversion,
the adversary must have partial knowledge of the training dataset’s
features to infer and query the model with specific queries [13].
Membership inference aims to test if a specific data point d was
used as training data and requires the adversary to know a subset of
samples used for training the model (that does not contain d) [26].
Reconstruction attacks. The goal of this attack is similar to that
of membership inference, but instead of testing for the existence of
a specific data point, the adversary intends to reconstruct raw data
used for training the model. To be successful, some attacks require
the adversary to have model-specific information, namely feature
vectors (e.g., Support Vector Machines or K-Nearest Neighbor) [2],
others only require black-box access to the model [24].

137

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

Summary. Unlike previous works [14-16, 25], which typically con-
sider a small subset of ML attacks, our proposal aims at providing
mechanisms that cover the full range of the above-mentioned ex-
ploits. Table 1 presents relevant state-of-the-art solutions, the secu-
rity attacks covered by these, and the attacks addressed by SOTERIA.
Intuitively, the resilience of our system is the result of combining
several mechanisms, which are only partially ensured by other
systems: i.) authenticity verification of inputs excludes injections
necessary for adversarial attacks; ii.) isolation guarantees of our
protocol ensure that malicious workers gather no additional infor-
mation other than statistical data, an essential aspect for preventing
most attacks, and iii.) query input via secure channel prevents the
adversary from performing arbitrary queries to our system, which
is also a central requirement for model inversion or reconstruction
attacks. This is analysed in detail in Section 4.5.

TEE-related security issues such as side-channel and memory ac-
cess pattern attacks are considered orthogonal and complementary
to our design goals. Indeed, mechanisms such as ObliviousRAM [27]
can be layered over Soteria to address these, at the cost of additional
performance overhead.

4 SOTERIA

SOTERIA is a privacy-preserving ML solution that avoids chang-
ing Apache Spark’s main architecture and processing flow while
retaining its usability, scalability, and fault tolerance properties.

4.1 Apache Spark: Architecture and Flow

As depicted in Figure 2, Apache Spark’s operational flow is as
follows. Before submitting ML tasks (e.g., model training, and/or
inference operations) to the Spark cluster, users must load their
local datasets and models to a distributed storage backend. Users
can then submit ML processing tasks, specified as ML task scripts,
to the Spark client, which is responsible for forwarding these scripts
to the Master node. At the Master node, tasks are forwarded to the
Spark Driver, which generates a Spark Context that then distributes
the tasks to a set of Worker nodes.

As Workers may be executing different steps of a given task,
they need to be able to transfer information (e.g., model parameters)
among each other through the network. After finishing the desired
computational steps, Workers send back their outputs to the Master
node, which merges the outputs and replies back to the client.

Similar to the regular flow of Apache Spark, SOTERIA can be
divided into two main environments or sides: the SoTERIA Client,
trusted side, and the SoTERIA Cluster, untrusted side, (e.g., cloud
environment). Next, we describe the main modifications required by
SOTERIA to the original Apache Spark’s design, depicted in Figure
2 by the white dashed and solid line boxes.

4.2 SoTERIA Client

SOTERIA’s client module is used by users for three main operations:
i) loading data into the distributed storage backend, ii) sending ML
training tasks to the Spark cluster, and iii) sending ML inference
tasks to the Spark cluster. SOTERIA does not change the way users
typically specify and perform the previous operations. The only
exception is that users need to provide additional information in a
Manifest configuration file, as described next.

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia

Trusted Side

Untrusted Side

(1 1
Bpeto o me et i
______________ \ ' Worker 1 HH
Master 5 o
Spark Driver | = EEETITI o |
Spark Context h £ [WDatalfoading 5 -

! 13 [Encryption Module] "

'

Data Loading Distributed

Encryption Module

Data

El Vanilla Apache Spark | | Enclave D New Components

Figure 2: SOTERIA architecture and operations flow.

Data Loading. For the first operation, the user must specify the
data to be loaded to the storage backend. However, such data has
to be encrypted before leaving the trusted user premises. This
step is done by extending Spark’s data loading component with a
transparent encryption module (Figure 2-@), This module encrypts
the data being loaded into the distributed storage backend with a
symmetric-key encryption scheme (Figure 2-®).

Tasks submission. ML training and inference operations include
two main files: the ML task script and the Manifest file. The trans-
parent encryption module, also integrated within MLIib, is used
to encrypt the ML task script (Figure 2-@), which contains sen-
sitive arguments (i.e, model parameters) and the ML’s workload
processing logic, and to decrypt the outputs (e.g., trained model or
inference result) returned by Spark’s Master node to the client.

The Manifest file contains the libraries to be used by the ML
task script, as well as the path at the storage backend where the
training or inference data, for that specific task, is kept (Figure 2-@).
Briefly, and as explained in the next sections, this file ensures that
different Spark components can attest the integrity of libraries and
data being used/read by them and, moreover, cannot access other
libraries or data that these are not supposed to.

The encryption module is in charge of securely exchanging the
Manifest file, and the user’s symmetric encryption key with the SGX
enclave on the Master node (Figure 2-@@). This is done once, at the
ML task’s bootstrapping phase, and requires establishing a secure
channel between the client and Master’s enclave. This channel
guarantees the security and integrity of the user’s encryption key
and the Manifest file, while the encrypted ML task scripts can be
safely sent via an unprotected channel.

With the previous design, sensitive data is only accessed in its
plaintext format at trusted user premises or inside trusted enclaves.
This includes users’ encryption keys, the information in the Mani-
fest file and ML task scripts, as well as the final output.

4.3 SoteR1A Cluster

Training and inference ML task scripts are sent encrypted to Spark’s
Master node to avoid revealing sensitive information. However,
the node requires access to the plaintext information contained in
these cryptograms to distribute the required computational load
across Workers. So, the Spark Driver and Context modules must be
deployed in a secure SGX enclave where the cryptograms can be
decrypted and the plaintext information can be securely accessed.
The cryptograms, however, can only be decrypted if the secure

138

Claudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, and Joao Paulo

Baseline Partitioned

o Worker N~~~ o Worker N

1 e
s ' H '
‘e Tasks P ISk v 5 °
H)-1 = | 1+ 8 || ML Algorithms || & |} < =
1| | Data Loading 5 ' b 5 T S | g 2
' ' f
' é [Encryption Module ' -~ a a. oading 1 O |;] ©
! e — !) % Encryption Module‘ :
____________________ N e

Figure 3: Comparison between SOTERIA-B and SOTERIA-P
schemes.

enclave has access to the user’s encryption key, thus explaining
why the key must be sent through a secure channel established
between the client module and the enclave.

For inference operations, the Master node also needs to access
the distributed storage backend to retrieve the stored ML model.
The user’s encryption key is necessary so that the encrypted model
is only decrypted and processed at the secure enclave. The Manifest
file ensures that only the storage locations specified in the file are
accessible to the Master Node (Figure 2-@).

After processing the ML task scripts, the Master’s enclave establi-
shes secure channels with the enclaves of a set of Workers to send
the necessary computational instructions! along with the user’s
encryption key and Manifest file (Figure 2-@). The user’s encryption
key is needed at the Worker nodes so that these can read encrypted
data (e.g., train dataset or data to be inferred) from the storage
backend while decrypting and processing it in a secure enclave
environment (Figure 2-@). The Manifest file is used, once again, to
prevent unwanted access to stored data. Furthermore, the enclaves
at the worker nodes establish secure channels between themselves
to transfer sensitive metadata information such as model training
parameters (Figure 2-@).

Finally, after completing the desired computational tasks, the
Workers send the corresponding inference or training outputs to
the Master node, through the established secure channel (Figure
2-@). The Master node then merges the partial outputs into the final
result and sends it encrypted, with the user’s encryption key, to
the trusted client module (Figure 2-@). At the latter, the result (i.e.,
trained model or inference output) is decrypted by the transparent
encryption module and returned to the user in plaintext.

4.4 SoTERIA Design

SOTERIA proposes a novel partitioning scheme, SOTERIA-P, that
does fine-grained partitioning of which operations execute inside
and outside secure enclaves. Note that this partitioning is only done
for ML operations executed at Spark Worker nodes. The remaining
operations done at other Spark components (i.e., Master) are always
executed inside trusted enclaves.

To better understand the novelty of our partitioning scheme,
we first introduce a common state-of-the-art approach, SOTERIA-B,
which is also supported by our system and is used in this paper as
a security and performance baseline.

SoTERIA Baseline (SOTERIA-B). In SOTERIA-B, all computation
done by Spark Workers is included in a trusted environment. The

The same metadata sent by a vanilla Spark deployment so that Workers know the
computational operations to perform.

SOTERIA: PPML on Apache Spark

executor processes launched by each Worker node are deployed
inside an enclave, as depicted in Figure 3. Outside the enclave, data
is always encrypted in an authenticated fashion, which allows the
Worker to decrypt and validate data integrity within the enclave.
SoTERIA Partitioning Scheme (SOTER1A-P). Our novel scheme is
based on the observation that ML workloads are composed of differ-
ent computational steps. Some must operate directly over sensitive
plaintext information (e.g., train and inference data and model),
while others do not require access to this type of data and are just
calculating and collecting general statistics about the operations
being made. For instance, in a multiclass ML task, where the user
may want to predict multiple classes, the evaluation of such an
algorithm would need to measure the precision and the probability
of each individual class. These measurements can be performed
independently of other operations over sensitive information.

Therefore, SOTERIA-P decouples statistical processing, used for
assessing the performance of inference and training tasks, from
the actual computation of the ML algorithms done over sensitive
plaintext information. This decoupling builds directly upon MLIib
and refactors its implementation without requiring any changes to
the way users submit ML tasks. As depicted in Figure 3, statistical
processing is done by executor processes in the untrusted envi-
ronment, while the remaining processing endeavors are done by
another set of executors inside a trusted enclave.

This decoupled scheme leads SOTERIA-P to reveal the following
statistical information during the execution of ML workloads: the
calculation of confidence results (accuracy, precision, recall and
F1-scores), table summaries and ROC/AUC curves, and probability
distributions for classes.

4.5 Security

Formally, our security goal is defined using the real-versus-ideal
world paradigm, similarly to the Universal Composability [7] frame-
work. Succinctly, we prove that SOTERIA is indistinguishable from
an idealized service for running ML scripts in an arbitrary external
environment that can collude with a malicious insider adversary.
We then use that abstraction to demonstrate how SOTERIA is re-
silient to real-world ML attacks. This idealized service is specified
as a functionality parametrized with the input data, which simply
executes the tasks described in the ML task script, and returns the
output to the client via a secure channel.

The full proof of SOTERIA can be found in part A of [1]. The
outline is as follows. The role played by SOTERIA ’s Master node can
be seen as an extension of the client, establishing secure channels,
providing storage encryption keys, and receiving outputs. We fol-
low the reasoning of [5] and replace the Master node with a reactive
functionality performing the same tasks. Similarly, each SOTERIA
Worker behaves simultaneously as a processing node and as a client
node, providing inputs to the computation of other Workers (e.g.,
model training parameters). This enables us to do a hybrid argu-
ment, where Worker nodes are sequentially replaced by idealized
reactive functionalities executing their roles in the task script.

Finally, all processing is done in ideal functionalities, and all
access to external storage is fixed by the ML task script and the
Manifest file, so we can refactor the functionalities to process over
hard-coded client data, and replace the secure data storage with

139

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

dummy encryptions. We have now reached the ideal world, where
all ML computation is done in an isolated service, and all other
protocol interactions are simulated given the ML task script and
Manifest files. Our analysis refers to SOTERIA-B, and thus estab-
lishes the baseline security result when no computation is done
outside the enclave (no leakage). The reasoning for SOTERIA-P is
identical, with the caveat that statistical data is explicitly revealed
as leakage in the ideal world.

4.5.1 Security implications of statistical leakage. To show that our
system is resilient against ML attacks, we must consider a common
prerequisite for such attacks to be successful: the adversary must
have black-box access to the model (Section 3.2). Our result implies
that adversaries cannot infer internal data from the workers, and the
secure channel between client and Master prevents adversaries from
injecting queries into the system. This would intuitively suggest
that our adversary is unable to perform queries in a black-box
fashion to the model, however, SOTERIA-P has the aforementioned
additional leakage of statistical information.

As such, a crucial security question to answer is: how does statis-
tical information relate to black-box model access, i.e. does the first
imply the second in any way? Extracting model access from statisti-
cal data is an ongoing area of research. However, current attacks
suggest one is unable to do this in any successful way [8]. This sup-
ports our thesis that statistical values are not sensitive information,
in the sense that their leakage does not expose our system to these
types of attacks. It follows that SOTERIA-P scheme is resilient to any
attack that requires black-box access to the model to succeed.

4.5.2 Relation to ML Attacks. We now overview the four types of
attacks referred to in Section 3.2 on a case-by-case basis. Part B
of [1] contains a more in-depth analysis of these attacks.

Resistance against input forgery is achieved by SOTERIA through
authenticated data encryption. This means that the input dataset is
authenticated by the data owner and explicitly defined in the Man-
ifest file, allowing enclave Worker nodes to check the authenticity
of all input data. Thus, no forged data is accepted for processing,
which is necessary for performing any type of adversarial attack.

The secure channels between the TEE at the Master node and the
client ensure that an external adversary cannot observe legitimate
query input/outputs, and cannot submit arbitrary queries to SOTE-
RIA. This query privacy feature is crucial to block illegitimate model
access, which allows us to protect against model extraction, model
inversion, membership inference as well as instances of reconstruction
attacks that require black-box access to the model.

Finally, reconstruction attacks require additional knowledge about
internal ML model data. Our security result shows that SOTERIA
is indistinguishable from an idealized ML service, which does not
reveal the trained model. This includes the important feature vec-
tors required for this attack to occur, which also cannot be inferred
from confidence values and class probabilities alone. Alternatively,
reconstruction attacks requiring black-box access to the model are
strictly stronger, but this, as we have argued, is not possible only
with knowledge of confidence values, class probabilities, ROC/AUC
curves, and table summaries (the explicit leakage of SOTERIA-P) [1].

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia

Table 2: Representation of the tasks of each ML algorithm
and the data sizes for different workloads.

Algorithms Tasks . Workloads . .
Tiny Large Huge Gigantic
ALS RS 193KB 345MB 2GB 4GB
PCA DR 256KB 92MB 550MB 688MB
GBT P 36KB 46MB 92MB 183MB
LR C+P 11GB 134GB 335GB 894GB

RS: Recommendation Systems; DR: Dimensionality Reduction; P: Prediction;
C: Classification.

4.6 Implementation

SOTERIA’s prototype is built on top of Apache Spark 2.3.0 and
implemented using both Java and Scala. Spark’s data loading library
was extended to include SOTERIA’Ss transparent encryption module.
The latter uses the AES-GCM-128 authenticated encryption cypher
mode, which provides both data privacy and integrity guarantees.

Both SOTERIA-B and SOTERIA-P schemes are supported by our
prototype. For SOTERIA-P’s implementation, Spark’s MLIib imple-
mentation was decoupled into two sub-libraries, one with the sta-
tistical processing (to be executed outside SGX), and another with
the remaining ML computational logic (to be executed inside SGX).

Graphene-SGX 1.0 was used for the overall management of Intel
SGX enclaves’ life cycle, for specifying the computation (i.e., in-
ternal Spark and MLIib libraries) to run at each enclave, and for
establishing secure channels (i.e., with the TLS-PSK protocol) be-
tween the enclaves at the Master and Worker nodes [30]. SOTERIA’s
Manifest file was also provided by Graphene.

5 EVALUATION

Our evaluation answers three main questions: i) How does SOTE-
RIA impacts the execution time of ML workloads? ii) How does the
SOTERIA-P scheme compares, in terms of performance, with state-of-
the-art approaches (i.e., SOTERIA-B and SGX-Spark)? iii) Can SOTERIA
efficiently handle different algorithms and dataset sizes?

5.1 Methodology

Environment. The experiments use a cluster with eight servers,
with a 6-core 3.00 GHz Intel Core 15-9500 CPU, 16 GB RAM, and a
256GB NVMe. The host OS is Ubuntu 18.04.4 LTS, with Linux kernel
4.15.0. Each machine uses a 10Gbps Ethernet card connected to a
dedicated local network. We use Apache Spark 2.3.0 and version
2.6 of the Intel SGX Linux SDK (driver 1.8). The client and Spark
Master run in one server while Spark Workers are deployed in the
remaining seven servers. SGX memory is configured to use 4GB.
Workloads. We resort to the HiBench benchmark [17] for evaluat-
ing four ML algorithms (Table 2), that are broadly used and natively
implemented on top of MLIib, namely: Alternating Least Squares
(ALS), Principal Component Analysis (PCA), Gradient Boosted
Trees (GBT) and Linear Regression (LR). For each algorithm, the
benchmark suite offers different workload sizes ranging from Tiny
to Gigantic configurations.

Setups and metrics. To validate SOTERIA’s performance, and the
benefits of fine-grained differentiation of secure ML operations, we
compare the implementations of our system with the SOTERIA-B and

140

Claudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, and Joao Paulo

SoTERIA-P schemes. These setups are compared with a deployment
of Apache Spark that does not offer privacy guarantees (Vanilla).

Moreover, we test SGX-Spark [14], a state-of-the-art SGX-based
solution that protects both analytical and ML computation done
with Apache Spark. It is designed to process sensitive information
inside SGX enclaves, so it can be considered the most similar to
SoTERIA. However, SGX-Spark can only guarantee that User Defined
Functions (UDFs) are processed in secure enclaves. This decision
leaves a large codebase of Spark outside the protected memory
region and, consequently, limits the users to only being able to
execute privacy-preserving ML algorithms based on UDFs.

For each experiment discussed in the next section, we include
the average algorithm execution time and standard deviation for 3
independent runs. The dstat monitoring tool was used to collect
the CPU, RAM, and network consumption at each cluster node.

5.2 Performance Overview

Figures 4a, 4b, 4c and 4d present the performance evaluation for
PCA, GBT, ALS and LR algorithms for different workload sizes.
Next, we list our main observations to aid in the characterization of
these results. Unless stated otherwise, the performance overhead
values discussed in this section correspond to the number of times
that the algorithm’s execution time increases for a given setup
when compared to the Vanilla Spark deployment results. Obs. 1to 5
correspond to the Huge workload for the defined algorithms, whilst
Obs. 6 to 9 refer to the overall results in Figure 4.

Observation 1. Vanilla Spark’s execution times for ALS, PCA, LR,
and GBT algorithms are, respectively, 55, 655, 657, and 189 seconds.
Observation 2. The execution time for ALS increases by 3.62x
and 4.35x for SOTERIA-P and SOTERIA-B, respectively. SGX-Spark
incurs an execution overhead of 4x. Thus, the three setups have
similar results while requiring approximately 150 seconds more pro-
cessing time than the vanilla deployment. Nevertheless, SOTERIA-P
performs slightly better than the other two approaches.
Observation 3. For PCA, SOTERIA-B and SOTERIA-P have an ex-
ecution overhead of 3.67x and 2.85x, while SGX-Spark increases
the computational time by 3.95x. When compared to SGX-Spark,
SoTERIA-P decreases the execution time by 12 minutes (27.8%).
Observation 4. For LR, SOTERIA-B and SGX-Spark exhibit an over-
head of 27.31x, while SOoTERIA-P reduces this value to 18.2x. This
reduction of 29.6% allows SOTERIA-P to complete this workload 1.4
hours earlier.

Observation 5. With the GBT algorithm, SOTERIA-B shows sim-
ilar execution times when compared to SGX-Spark, with a 7.04x
and 6.64x increase, respectively. SOTERIA-P outperforms both ap-
proaches, with an overhead of 4.79x, 27.8% less than SGX-Spark.
Observation 6. For Tiny and Large workloads with the PCA al-
gorithm, SOTERIA performs similarly for our two schemes, while
outperforming SGX-Spark. With larger workload sizes, the over-
head imposed by our solutions increases, however, it continues
to show better performance than SGX-Spark. SOTERIA-B has an
overhead of 1.96x to 5.15x for Tiny and Gigantic workloads, whilst
SoTERIA-P incurs an overhead of 1.72x to 3.79x. When compared
with SGX-Spark, the results show an absolute difference of 4 sec-
onds and 7 minutes (7%), for SOTERIA-B, and 7 seconds and 33
minutes (19% and 31%) respectively, for SOTERIA-P.

SOTERIA: PPML on Apache Spark

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

200

Execution Time (seconds)
b ow
N
g
S

0 0 0

(a) PCA (b) GBT

500 500 250 2500
400 2 400 2 150 2 200 2000
=} =1 =}
300+ = 300 £ = 150 1500}
S S 100 S
200 § 200 § g 100 1000
Z N 50 Z
I 100 5 100 Y > 50 500
0 g 0 £ 0 E o 0
7500 &= 1400 3000 = 800 & 20000 65000
[floge] [Gigantd = 1200 5 g s s
: 6000 £ 1000 iogg 2 600 £ 15000 52000
g 4500 g = 800 = 150 g = 39000
a o1 1500 2 400 2 10000F 5
8 3000 |] Zgg 1000 £ 100] 8 26000
L = = 200 = 5000F e
] 1500 200 500 50 2 13000
ol— 0

0

(c) ALS (d) LR

Figure 4: Runtime execution for PCA, GBT, ALS and Linear Regression for Tiny, Large, Huge and Gigantic workloads. The
legend is as follows: O Vanilla Spark; m SOTERIA-B; B SOTERIA-P; B SGX-Spark.

Observation 7. Regarding the GBT algorithm, and the Tiny work-
load, the overhead of SOTERIA-B, SOTERIA-P, and SGX-Spark are sim-
ilar. However, the difference between the three approaches is more
visible when increasing the workload size. SOTERIA-P (Tiny-2.13x
and Gigantic-5.88x) outperforms both approaches, while SOTERIA-B
(Tiny-2.18x, Gigantic-9.35x) and SGX-Spark (Tiny-2.3x, Gigantic-
10.34x) have similar results. SOTERIA-P is able to surpass SGX-
Spark’s execution time in the Gigantic workload by up to 41%.
Observation 8. With ALS, SOTERIA-P shows an execution time
overhead of 2.04x and 3.28x, for the Tiny and Gigantic workloads,
respectively. SOTERIA-P achieves lower overhead than SOTERIA-
B and SGX-Spark for all dataset sizes, with the execution time
decreasing by 8 seconds (9%) for the Tiny and 191 seconds (27%)
for the Gigantic workloads.

Observation 9. For LR, with the Tiny workload, SOTERIA-B and
SOTERIA-P increase execution time by 14.39x and 12.95x, respec-
tively. As for the Gigantic workload, SOTERIA-B incurs an overhead
of 30.04x and SOTERIA-P of 23.89x. Compared to SGX-Spark, our
SOTERIA-P decreases the execution time by 43 seconds for the Tiny
workload and by 4.31 hours for the Gigantic workload (22.6%).
Observation 10. Overall, the CPU, RAM, and network usage for
both SOTERIA schemes is similar to the vanilla Spark baseline. In
more detail, SOTERIA-B with LR presents the upper-bound limit for
both memory and CPU, showing an increase of 9% in both when
compared with vanilla Spark (20%). Whilst the network shows an
upper-bound increase of 10% (vanilla Spark shows an upper-bound
network of 135MB) in SOTERIA-B with PCA due to extra encrypted
data paddings being sent between Spark Workers.

Observation 11. SOTERIA does not impact the accuracy of ML
workloads. For all experiments, we measured the corresponding
accuracy metrics (e.g., accuracy, root mean square error, or ROC).
The results corroborate that both SOTERIA-B and SOTERIA-P show
accuracy values similar to the vanilla Spark version.

5.3 Analysis

We analyze the results based on i) dataset size; and ii) size of trusted

computing base (TCB).

Dataset size. For PCA, GBT, and ALS with smaller datasets, SOTERIA-
B and SOTERIA-P perform similarly (Figure 4). However, as the size

of the datasets increases, more operations and data must be trans-

ferred to the SGX enclave, thus taking a more noticeable toll on

the overall performance. The page swapping mechanism of SGX,

which occurs due to its memory limitations, incurs a significant

performance penalty [11, 12]. For example, when compared to the

141

vanilla setup, the PCA algorithm overhead for SOTERIA-B varies
between 1.96x for Tiny workload and 5.15x for Gigantic workload.
While for SOTERIA-P, the execution time increases 1.78x in the Tiny
workload and 3.79x in the Gigantic workload.

SOTERIA-P is the setup that scales better as the amount of data to
be processed grows. Indeed, as seen in Obs. 6-9, it is able to reduce
execution time from 9% up to 31% when compared to SGX-Spark.
Size of TCB. SGX-Spark outperforms SOTERIA-B for some of the
evaluated algorithms (Obs. 2, 4, and 5). As SGX-Spark only protects
UDFs, the performance overhead imposed by the larger TCB of
SoTERIA-B is higher. Nevertheless, when compared to SGX-Spark,
SOTERIA-B covers a wider range of ML attacks, while keeping per-
formance overhead below 1.59x. Indeed, for algorithms such as PCA,
SOTERIA-B has similar or slightly inferior execution times (Obs. 3)
which is due to both setups performing similar computations at the
enclaves while the UDF mechanism is not fully optimized.

On the other hand, SOTERIA-P always outperforms SGX-Spark
and SOTERIA-B (Obs. 2-5). This is due to the TCB reduction present
in our novel partitioning scheme. The results show that this solu-
tion can reduce the training time by up to 30%, namely for the LR
algorithm with the Huge workload (Obs. 4).

Discussion. The results show that SOTERIA-P outperforms other
state-of-the-art approaches, namely SGX-Spark, for all the consid-
ered ML algorithms. Also, SOTERIA-P achieves better performance
than the SOTERIA-B setup, while offering similar security guarantees
when considering distinct ML attacks (Section 4.5). This is made
possible by filtering key operations to be done outside enclaves.

In detail, when compared to SOTERIA-B, SOTERIA-P reduces ML
workloads’ execution time by up to 37%. When compared with SGX-
Spark, the execution time is reduced by up to 41%. Interestingly,
for the LR algorithm using a Gigantic workload (894GB), SOTERIA-
p decreases computation time by 4.3 hours and 3.3 hours, when
compared with SGX-Spark and SOTERIA-B, respectively. The per-
formance overhead of SOTERIA-P for the four different algorithms
ranges from 1.7x to 23.8x when compared to Vanilla Spark.

6 RELATED WORK

Privacy-preserving ML with TEEs. Chiron [15] enables training
ML models on a cloud service without revealing information about
the training dataset. Myelin [16] offers a similar solution to Chiron
while adding differential privacy and data oblivious protocols to
the algorithms to mitigate the exploits from side-channels and the
information leaked by the model parameters. SoTERIA differs from
these works as it is able to cover both the training and inference

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia

phases while providing additional protection against adversarial
samples, reconstruction, and membership inference attacks (Table 1).
In [23], five ML algorithms are re-implemented with data oblivious
protocols. These protocols combined with TEEs ensure strong pri-
vacy guarantees while preventing the exploitation of side-channel
attacks that observe memory, disk, and network access patterns
to infer private information. Unlike this solution, SOTERIA aims at
transparently supporting all ML algorithms built with MLIib.
Privacy-preserving analytics with TEEs. TEEs have also been
used to ensure privacy-preserving computation for general-purpose
analytical frameworks [25]. In comparison to SGX-Spark [14], de-
tailed in Section 5.1, SOTERIA supports a broader set of algorithms
(i.e., any algorithm that can be built with the MLIlib API), while
protecting users from a more complete set of ML attacks (Table 1).
Opaque [32] and Uranus [19] resort to SGX to provide secure
general-purpose analytical operations, while only supporting a
restricted set of ML algorithms. Opaque combines SGX with oblivi-
ous protocols and requires the re-implementation of default Apache
Spark UDF operators. Uranus is also based on porting UDF process-
ing to SGX enclaves but includes a single ML workload. Differently,
SOTERIA is targeted at ML workloads and is not limited by UDF-
based algorithms that, when compared with MLIlib-based ones,
exhibit lower performance for some ML workloads [10]. There-
fore, the design, implementation, and security requirements to be
considered are distinct when comparing with SOTERIA.

7 CONCLUSION

We propose SOTERIA, a system for distributed privacy-preserving
ML. Our solution builds upon the combination of Apache Spark and
TEEs to protect sensitive information being processed at third-party
infrastructures during the ML training and inference phases.

The innovation of SOTERIA stems from a novel partitioning
scheme (SoTERIA-P) that allows specific ML operations to be de-
ployed outside trusted enclaves. Namely, we show that it is possible
to offload non-sensitive operations (i.e., statistical calculations) from
enclaves, while still covering a larger spectrum of black-box ML
attacks than in previous related work. Also, this decision enables So-
TERIA to perform better than existing solutions, such as SGX-Spark,
while reducing ML workloads execution time by up to 41%.

ACKNOWLEDGMENTS

We thank Ricardo Macedo for his valuable input. This work was sup-
ported by the Portuguese Foundation for Science and Technology
through project LA/P/0063/2020 (Joao Paulo), and by Ph.D. Fel-
lowship (SFRH/BD/146528/2019) and project AIDA (Claudia Brito),
with reference POCI-01-0247-FEDER-045907, co-financed by the
ERDF - European Regional Development Fund, through the Opera-
tional Programme for Competitiveness and Internationalisation -
COMPETE 2020 Programme under the Portugal 2020 Partnership
Agreement, on the scope of the CMU Portugal Program.

REFERENCES

[1] [n.d.]. SOTERIA Proof. https://dbr-haslab.github.io/repository/sac23.pdf.

[2] Mohammad Al-Rubaie and J Morris Chang. 2019. Privacy-preserving machine
learning: Threats and solutions. IEEE Security & Privacy.

[3] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security.

142

Claudia Brito,

[4]
[5]

[6]

[7]
(8]

[9]

[10

[11

[12]

[13

[14

[15

[16]

(17

[18

[20

[21]

[22

(23]

[24]

[26

[27]

[28

[29]

[30

[31

[32

Pedro Ferreira, Bernardo Portela, Rui Oliveira, and Joao Paulo

Microsoft Azure. [n. d.]. Azure Confidential Computing. https://azure.microsoft.
com/en-us/solutions/confidential-compute/. (Accessed on 22/10/2022).

Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, et al. 2017.
Secure multiparty computation from SGX. In International Conference on Financial
Cryptography and Data Security. Springer.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-Based Ad-
versarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models.
In 6th International Conference on Learning Representations,.

R. Canetti. 2001. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd IEEE Symposium on Foundations of Computer Science.
Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli, Somesh Jha, et al.
2020. Exploring connections between active learning and model extraction. In
29th USENIX Security Symposium.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Zoo: Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In 10th ACM workshop on artificial intelligence
and security.

Databricks. [n. d.]. Optimizing Apache Spark UDFs. https://www.databricks.
com/session_eu20/optimizing-apache-spark-udfs. (Accessed on 27/10/2022).
Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, et al. 2019. Everything
you should know about Intel SGX performance on virtualized systems. ACM on
Measurement and Analysis of Computing Systems.

Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch, et al.
2022. Benchmarking the Second Generation of Intel SGX Hardware. In Data
Management on New Hardware.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In 22nd
ACM SIGSAC Conference on Computer and Communications Security.
Large-Scale Data & Systems (LSDS) Group. [n. d.]. SGX-Spark. https://github.
com/Isds/sgx-spark. (Accessed on 22/10/2022).

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, et al. 2018. Chiron:
Privacy-preserving machine learning as a service. arXiv preprint arXiv:1803.05961.
Nick Hynes, Raymond Cheng, and Dawn Song. 2018. Efficient deep learning on
multi-source private data. arXiv preprint arXiv:1807.06689.
Intel. [n. d.]. HiBench is a big data benchmark suite.
Intel-bigdata/HiBench. (Accessed on 22/10/2022).

Salman Igbal, Miss Laiha Mat Kiah, Babak Dhaghighi, Muzammil Hussain, Sule-
man Khan, Muhammad Khurram Khan, and Kim-Kwang Raymond Choo. 2016.
On cloud security attacks: A taxonomy and intrusion detection and prevention
as a service. Journal of Network and Computer Applications.

Jianyu Jiang, Xusheng Chen, TszOn Li, Cheng Wang, et al. 2020. Uranus: Simple,
efficient sgx programming and its applications. In 15th ACM Asia Conference on
Computer and Communications Security.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial Machine
Learning at Scale. In 5th International Conference on Learning Representations.
Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, et al. 2013.
Innovative instructions and software model for isolated execution. Hasp isca.
Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, et al. 2016. Mllib:
Machine learning in apache spark. The Journal of Machine Learning Research.
Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, et al. 2016. Obliv-
ious multi-party machine learning on trusted processors. In 25th USENIX Security
Symposium.

Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and other.
2020. Updates-leak: Data set inference and reconstruction attacks in online
learning. In 29th USENIX Security Symposium.

Fahad Shaon, Murat Kantarcioglu, Zhigiang Lin, and Latifur Khan. 2017. Sgx-
bigmatrix: A practical encrypted data analytic framework with trusted processors.
In ACM SIGSAC Conference on Computer and Communications Security.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In Symposium on
Security and Privacy (SP).

Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, et al. 2018. Path
ORAM: an extremely simple oblivious RAM protocol. 7. ACM.

Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter, and other. 2016. Stealing
machine learning models via prediction apis. In 25th USENIX Security Symposium.
Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Papernot.
2021. Data-free model extraction. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-sgx: A practical
library OS for unmodified applications on SGX. In USENIX Annual Technical
Conference.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, et al. 2016. Apache
spark: a unified engine for big data processing. Commun. ACM.

Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, et al. 2017.
Opaque: An oblivious and encrypted distributed analytics platform. In 14th
USENIX Symposium on Networked Systems Design and Implementation.

https://github.com/

https://dbr-haslab.github.io/repository/sac23.pdf
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.databricks.com/session_eu20/optimizing-apache-spark-udfs
https://www.databricks.com/session_eu20/optimizing-apache-spark-udfs
https://github.com/lsds/sgx-spark
https://github.com/lsds/sgx-spark
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

