SOTERIA: Preserving Privacy in Machine Learning

Cláudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, João Paulo

INESC TEC & University of Minho, *INESC TEC & Faculty of Sciences. University of Porto

Motivation

- The exponential growth of data is raising novel challenges for large-scale data analytics.
 - Automation based on ML.
- ML datasets and models are stored and processed in plaintext.

Motivation

- The exponential growth of data is raising novel challenges for large-scale data analytics.
 - Automation based on ML.
- ML datasets and models are stored and processed in plaintext.
- Third-party infrastructures are untrusted.

Motivation

- The exponential growth of data is raising novel challenges for large-scale data analytics.
 - Automation based on ML.
- ML datasets and models are stored and processed in plaintext.
- Third-party infrastructures are untrusted.
- Increasing international legislation to protect the privacy of citizens.

Limitations

Common cryptographic schemes impose impractical overheads.

Limitations

- Common cryptographic schemes impose impractical overheads.
- TEEs' performance depends on the number of computations,
 I/O operations and trusted computing base (TCB).
 - Reducing the code base.
 - Reducing the number of operations.

SOTERIAContributions

- Soteria, a privacy-preserving distributed machine learning solution
 - A baseline scheme (SOTERIA-B) for performance and security comparison.
 - A new computation **partitioning scheme** (SOTERIA-P) for running Apache Spark' MLlib inside SGX.

Client Side

Client Side

Task Stage

Data Stage

Master Stage Needs plaintext data. **Untrusted Side Trusted Side** Client Master **Spark Driver Spark Context** Vanilla Spark **Enclave New Components Secure Channel**

Worker Stage

Partitioned Design

Partitioned Design

Partitioned Design

Partitioned Design

Baseline Partitioned

How does **statistical information** relate to **black-box model access**, i.e. does the first imply the second in any way?

Vanilla Apache Spark

Enclave

New Components

SOTERIA

Security implications of statistical leakage

- Current attacks suggest one is unable to do this in any successful way*.
- SOTERIA-P is resilient to any attack that requires blackbox access to the model to succeed.

SOTERIA

Relation to ML Attacks

- Adversarial Attacks:
 - Authenticated encryption.
- Model Extraction, Model Inversion, Membership Inference and Reconstruction Attacks:
 - Secure channels for communication.
 - \circ Computation on feature vectors is done inside the enclaves.
 - Black-box access to the model.

HiBench

- Algorithms:
 - Alternating Least Squares (ALS).
 - Principal Component Analysis (PCA).
 - Gradient Boosted Trees (GBT).
 - Linear Regression (LR).
- Workload sizes ranging from 193KiB to 894GiB.
- Setups:
 - Vanilla, Soteria-B, Soteria-P, SGX-Spark.
- 8 Ubuntu 18.04 servers, Intel Core i5-9500 with 16GiB RAM, 256GiB
 NVMe.

Dataset Size

Similar performance with small dataset sizes

Dataset Size

Up to 41% less execution time

HiBench

335GB

HiBench

894GB

Summary

- SOTERIA, a system for distributed privacy-preserving ML.
 - A novel **partitioning scheme** (SOTERIA-P) that allows specific ML operations to be deployed outside trusted enclaves.
 - Feasibility of offloading non-sensitive operations while still covering a larger spectrum of black-box ML attacks.
 - Support of numerous ML algorithms.
 - Non-intrusive to the clients flow.

SOTERIA: Preserving Privacy in Machine Learning

Cláudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, João Paulo

INESC TEC & University of Minho, *INESC TEC & Faculty of Sciences. University of Porto

