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Privacy and Security in Machine Learning

Motivation

The exponential growth of data is raising novel
challenges for large-scale data analytics.

Automation based on ML.

« ML datasets and models are stored and processed 1in
plaintext.
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Privacy and Security in Machine Learning

Motivation

« Third-party infrastructures are untrusted.
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Privacy and Security in Machine Learning

Motivation

« Increasing 1international legislation to protect the
privacy of citizens.
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Privacy and Security in Machine Learning
Current ML Pipeline
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Privacy and Security in Machine Learning
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Privacy and Security in Machine Learning

Current ML Pipeline

Trusted Site

Data Source

Untrusted Site

Data Treatment

Training Dataset

Y

—

Model

Trained Model

Y

Model Extraction

- L@fﬂJ
|

Inference

Adversarial Samples Reconstruction Attacks Membership Inference
. | Model Inversion
. S * A -
Y Y g Y RS
1st stage 2nd stage 3rd stage 4th stage 5th stage
Feature vectors Reconstruction
direct access of raw data

SOTERIA: Preserving Privacy in Distributed Machine Learning




Privacy and Security in Machine Learning
Current ML Pipeline
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Privacy and Security in Machine Learning
Current ML Pipeline
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Privacy and Security in Machine Learning
Current ML Pipeline
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Privacy and Security in Machine Learning

Limitations

e Common cryptographic schemes impose 1impractical
overheads.
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Privacy and Security in Machine Learning

Limitations

e Common cryptographic schemes impose 1impractical

overheads.
e TEEs’ performance depends on the number of computations,

I/0 operations and trusted computing base (TCB).

o Reducing the code base.
o Reducing the number of operations.
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SOTERIA

Contributions

® Soteria, a privacy-preserving distributed machine
learning solution

® A baseline scheme (SOTERIA-B) for performance and security
compar-ison.

® A new computation partitioning scheme (SOTERIA-P) for running Apache
Spark’ ML1lib inside SGX.
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SOTERIA Architecture
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SOTERIA Architecture
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SOTERIA Architecture
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SOTERIA Architecture
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SOTERIA Architecture

Master Stage
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SOTERIA Architecture

Worker Stage
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SOTERIA Architecture

Partitioned Design
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SOTERIA Architecture

Partitioned Design
Baseline Partitioned
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Everything runs
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SOTERIA Architecture

Partitioned Design
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Statistics are offloaded and
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SOTERIA Architecture

Partitioned Design

How does statistical information relate to black-hox model

access, i.e. does the first imply the second in any way?
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SOTERIA

Security implications of statistical leakage

® Current attacks suggest one is unable to do this in any
successful way*.

® SOTERIA-P 1is resilient to any attack that requires black-
box access to the model to succeed.

*Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli, Somesh Jha, et al. Exploring connections between active learning and model extraction. In 29th USENIX Security Symposium, 2020
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SOTERIA

Relation to ML Attacks

® Adversarial Attacks:
o Authenticated encryption.
® Model Extraction, Model Inversion, Membership Inference
and Reconstruction Attacks:
o Secure channels for communication.
o Computation on feature vectors is done inside the enclaves.
o Black-box access to the model.
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Evaluation
HiBench

e Algorithms:

0 Alternating Least Squares (ALS).

0 Principal Component Analysis (PCA).
0 Gradient Boosted Trees (GBT).

O Linear Regression (LR).

Workload sizes ranging from 193KiB to 894GiB.
Setups:

o Vanilla, Soteria-B, Soteria-P, SGX-Spark.

8 Ubuntu 18.04 servers, Intel Core 15-9500 with 16GiB RAM, 256GiB
NVMe.
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Evaluation

Dataset Size
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Evaluation
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Evaluation
HiBench
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Evaluation

HiBench
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Summary

® SOTERIA, a system for distributed privacy-preserving ML.
o A novel partitioning scheme (SOTERIA-P) that allows specific
ML operations to be deployed outside trusted enclaves.
o Feasibility of offloading non-sensitive operations while
still covering a larger spectrum of black-box ML attacks.
o Support of numerous ML algorithms.
Non-intrusive to the clients flow.
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