Diagnosing applications’ 1/0
behavior through system call
observability

Tania Esteves, Ricardo Macedo, Rui Oliveira and Joao Paulo
INESC TEC & University of Minho

5th Workshop on Data-Centric Dependability and Security (DCDS’23)

INESC

Diagnosing applications storage 1/0

Problem

@ Applications often exhibit inefficient or erroneous /O behaviors

» Costly access patterns
- Small-sized /0O requests or random accesses

» [/O contention
- Concurrent requests to shared resources

» Erroneous usage of I/0 calls
- Accessing wrong file offsets

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Problem

@ Applications often exhibit inefficient or erroneous /O behaviors

» Costly access patterns
- Small-sized /0O requests or random accesses

» [/O contention
- Concurrent requests to shared resources

» Erroneous usage of I/0 calls
- Accessing wrong file offsets

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Problem

@ Applications often exhibit inefficient or erroneous /O behaviors

» Costly access patterns
- Small-sized /0O requests or random accesses

» [/O contention
- Concurrent requests to shared resources

» Erroneous usage of I/0 calls

- Accessing wrong file offsets m

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Problem

@ Applications often exhibit inefficient or erroneous /O behaviors

» Costly access patterns
- Small-sized /0O requests or random accesses

» [/O contention
- Concurrent requests to shared resources

» Erroneous usage of I/0 calls

- Accessing wrong file offsets M

Can compromise the performance, correctness and dependability of applications!

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Current approaches

@ Source code instrumentation v Provides accurate information
, about applications’ actions
» Intrusive

- Source code may be unavailable

» Complex & time-consuming
- Large codebases to understand and modity

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Current approaches

@ Source code instrumentation v Provides accurate information

, about applications’ actions
» Intrusive

- Source code may be unavailable

» Complex & time-consuming

- Large codebases to understand and modity

Fluent Bit
1M LoC

RocksDB
440K LoC

sILK W)

[1] BALMAU, Oana, et al. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In: USENIX Annual Technical Conference. 2019. p. 753-760.

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Current approach

@ Iracing v Transparent to the application

» High overhead vs data loss
- High overhead can camouflage erroneous behaviors

» Lack of analysis pipelines
- Large number of events to analyze manually

» Lack of flexibility
- Solutions designed for rigid analysis scenarios

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Current approach

@ Iracing v Transparent to the application

» High overhead vs data loss
- High overhead can camouflage erroneous behaviors

» Lack of analysis pipelines
- Large number of events to analyze manually

» Lack of flexibility
- Solutions designed for rigid analysis scenarios

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage 1/0

Current approach

@ Iracing v Transparent to the application

» High overhead vs data loss
- High overhead can camouflage erroneous behaviors

» Lack of analysis pipelines
- Large number of events to analyze manually

» Lack of flexibility

Diagnosing applications’ I/O behavior through system call observability

DIO

This work

® A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

» [ransparency

» Comprehensive and flexible tracing
» Practical and timely analysis

» Data querying and correlation

» Customized visualization

Diagnosing applications’ I/O behavior through system call observability

DIO

This work

® A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

» [ransparency v A new eBPF-based tracer

» Comprehensive and flexible tracing
» Practical and timely analysis
» Data querying and correlation

» Customized visualization

Diagnosing applications’ I/O behavior through system call observability

DIO

This work

® A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

» [ransparency v A new eBPF-based tracer

» Comprehensive and flexible tracing v Contextual information from kernel & Filters

» Practical and timely analysis
» Data querying and correlation

» Customized visualization

Diagnosing applications’ I/O behavior through system call observability

DIO

This work

® A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

» [ransparency v A new eBPF-based tracer

» Comprehensive and flexible tracing v Contextual information from kernel & Filters

» Practical and timely analysis v Data sent directly to a remote analysis pipeline

» Data querying and correlation

» Customized visualization

Diagnosing applications’ I/O behavior through system call observability

DIO

This work

® A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

» [ransparency v A new eBPF-based tracer

» Comprehensive and flexible tracing v Contextual information from kernel & Filters
» Practical and timely analysis v Data sent directly to a remote analysis pipeline

» Data querying and correlation v Query, filter and correlate captured data

» Customized visualization

Diagnosing applications’ I/O behavior through system call observability

DIO

This work

® A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

» [ransparency v A new eBPF-based tracer

» Comprehensive and flexible tracing v Contextual information from kernel & Filters

» Practical and timely analysis v Data sent directly to a remote analysis pipeline
» Data querying and correlation v Query, filter and correlate captured data
» Customized visualization v Explore data and build customized visualizations

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

o ™ EE I Im E E E E E E N N EE &N NN ©EN®§N®§N®§ND®§ND®§N®§N®EN®N®N®GND®GN®§N®N®§N®§N®&ED®BND§N®DN®§N BN &N NN NN EEEE . N

P 2 3
r Servert \
Application :
D :
1 i
@ :
| N

X :
P D :
: o :
: © ,
i O i
| (7)) |
! > i
: 2 :
| Q) |
| O |
: T i
& :
, O :
s '
1 X _ :
: Storage Device :
I‘~ "

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

o ™ EE I Im E E E E E E N N EE &N NN ©EN®§N®§N®§ND®§ND®§N®§N®EN®N®N®GND®GN®§N®N®§N®§N®&ED®BND§N®DN®§N BN &N NN NN EEEE . N

r Servert \

Application :

: § E

& :

0 :

D .

: - E

: ‘© :

i O i

| (7)) |

I - i

: 2 -

v 9 :

- :

8 :

e ,

L | 5 DIO’s tracer runs along the targeted
: Storage Device '

! ; application, intercepting its syscalls

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

o ™ EE I Im E E E E E E N N EE &N NN ©EN®§N®§N®§ND®§ND®§N®§N®EN®N®N®GND®GN®§N®N®§N®§N®&ED®BND§N®DN®§N BN &N NN NN EEEE . N

v Serverd

Application

Syscalls

DIO’s tracer runs along the targeted

Storage Device
application, intercepting its syscalls

.-------------------'

L 2

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

Syscalls

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

Syscalls

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

3 intercepts

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

collect

Kernel-space

DIO’s tracer runs along the targeted
application, intercepting its syscalls

|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

S s s EEEEEE®m

collect

Kernel-space

Collected information is sent directly to
the Backend component, which is
responsible for indexing and persisting it

- = = H == = = == = = =H = = = =H =H H =HE = =H = =B =HE = = = = =B = =B = =B =B = = =B =B =H =
.-------------------'

Storage Device

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

S s s EEEEEE®m

Kernel-space

Collected information is sent directly to
the Backend component, which is
responsible for indexing and persisting it

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

S s s EEEEEE®m

Kernel-space

Collected information is sent directly to
the Backend component, which is
responsible for indexing and persisting it

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

S s s EEEEEE®m

o :
' & ,
& : .
' D J e
= : oo \
: , : Server3 :
Visualizer
' g : : :
} O : \ ,
5 :
y O ;
L 5 : As soon as the data reaches the
1 X - 1 .]
; Storage Device : Backend, it becomes available for
X K visualization at the Visualizer
. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

S s s EEEEEE®m

o :
' & ,
& : .
' D e
= : R e \
: , : Server3 :
M Visualizer
' g : : :
i % : ‘s ________________ ¢'
5 :
y O ;
L 5 : As soon as the data reaches the
1 X - 1 .]
; Storage Device : Backend, it becomes available for
X K visualization at the Visualizer
. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

System overview

S s s EEEEEE®m

build correlation algorithms, or visually
explore the data at the Visualizer

! :

V& ,

& :

' 8 :

LD : .

! : ' Server3 : ‘
E E E Visualizer E visualize

' g : : :

i % : ‘s ________________ ¢'

X :

: O ; .

'S : Users can query directly the backend and
1 X 1

Storage Device

--

. DIO’s components =% DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO

Implementation

® lracer
» Uses eBPF technology
» Currently supports 42 storage-related system calls
» Implemented in =8K LoC (restricted C & Go)

® Backend & Visualizer
» Elasticsearch and Kibana (v8.5.2)
» File path correlation algorithm
- Correlates file descriptors with their corresponding file paths
» Pre-defined dashboards and visualizations

Diagnosing applications’ I/O behavior through system call observability

Evaluation

Goals

@ Showcase how DIO eases the observation of storage issues
» ldentitying erroneous actions that lead to data loss
» Finding the root cause of performance anomalies

® Understand the performance impact induced by DIO
» Comparison with two state-of-the-art tracers

- Unlike other tracers,

DIO collects, parses, and forwards t

to the analysis pipeline while imposing reduced performa

m

h

e traced Information
ce overnead

Diagnosing applications’ I/O behavior through system call observability

Evaluation

Goals

@ Showcase how DIO eases the observation of storage issues

» |dentitying erroneous actions that lead to data loss M

» FINAing the root cause of performance anomalies

@ Understand the performance impact induced by
» Comparison with two state-of-the-art tracers

DIO

- Unlike other tracers, DIO collects, parses, and forwards t

to the analysis pipeline while imposing reduced performa

m

h

e traced Information
ce overnead

Diagnosing applications’ I/O behavior through system call observability

Evaluation

Goals

@ Showcase how DIO eases the observation of storage issues

» ldentitying erroneous actions that lead to data loss
» FINAing the root cause of performance anomalies ’

@ Understand the performance impact induced by
» Comparison with two state-of-the-art tracers

P\OG\‘SDB

DIO

- Unlike other tracers, DIO collects, parses, and forwards t

to the analysis pipeline while imposing reduced performa

m

h

e traced Information
ce overnead

Diagnosing applications’ I/O behavior through system call observability

Evaluation

Goals

@ Showcase how

» |dentitying erroneous actions that lead to data loss M
» FINAing the root cause of performance anomalies ’

DIO eases the observation of storage issues

P\OG\‘SDB

® Understand the performance impact induced by DIO
» Comparison with two state-of-the-art tracers @
- Unlike other tracers, DIO collects, parses, and forwards t

to the analysis pipeline while imposing reduced performa

m

h

e traced Information
ce overnead

Diagnosing applications’ I/O behavior through system call observability

Evaluation

Goals

@ Showcase how DIO eases the observation of storage issues

@ Understand the performance impact induced by
» Comparison with two state-of-the-art tracers

- Unlike other tracers,

» |dentitying erroneous actions that lead to data loss M
» FINAing the root cause of performance anomalies ’

P\OG\‘SDB

DIO collects, parses, and forwards t

to the analysis pipeline while imposing reduced performa

m

h

DIO@@

e traced Information
ce overnead

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit

Identifying erroneous actions that lead to data loss

@ Fluent Bit: a high-performance logging and metrics processor and forwarder
@ Problem: clients observe data loss when using Fluent Bit’s tail input plugin 1.4.0)

in_tail: fluent-bit reads wrong offsets when two file have the same name and the log missing using tail input plugin #4895
Same inOde On IinUX System. #1 875 wangyuan0916 opened this issue on Feb 22, 2022 - 11 comments

(@Y -l wtan825 opened this issue on Jan 14, 2020 - 17 comments

ﬁ wangyuan0916 commented on Feb 22, 2022 - edited ~

Bug Report
wtan825 commented on Jan 14, 2020 - edited ~ Assignees
Describe the bug
| use tail input plugin to gather and foward container logs in kubernetes cluster with this config file:
[INPUT]

Name tail

Labels Tag kube *

. m @ Path /var/log/containers/*.log
=D ¥a) el e gogJingaae fo ool oo n_,-k.. AleT(si<HTaMela S T

i edsiper

Bug Report

Describe the bug

P B e B R R O P e A D A S T S e S A T AT - SR DI I P e g, DB /var/log/flb_kube.db
§ (https://github.com/fluent/fluent-bit/blob/master/plugins/in_tail/tail_db.c line 109). the problem is after file (named A) is & Mem_Buf_Limit 5MB
deleted, another file (also named A) created with the same inode. fluent-bit will read the old A's offset. ; . Skip_Long_Lines On
% i e S A O e S i i e i i R e LA e i it it s Projects Refresh_Interval 10
‘ ' v o o ' o o ' o o ' , ' ' ' None yet multiline.parser docker, cri
int flb_tail_db_file_set(struct flb_tail_file xfile, Read_from_Head true
struct flb_tail_config *ctx)
{ Milestone when a new file is created, there's a log in fluent-bit pod like:
int ret; 2022-02-22T07:52:06.428965848Z stderr F [2022/02/22 07:52:06] [debug] [input:tail:tail.0] inode=262387 with
char query[PATH_MAX]: No milestone offset=1244 appended as /var/log/containers/log1-ghsmu-syslog-log-sinklog-emitter--1-mjmz|_ns_log-emitter-
struct query_status gs = {0}; af21dc3aab4aeacd19b3ba295bdc1d260e27f80e63e931a9e52275dfaa83e2d0.log
JBHIREEE 18 GRCERI, Development Z It is étrange that this is a new file, but the offset is not 0, which will actually lead fluentbit to read from offset=1244 and miss 3

¥ logs ahead of this offset. | found fluentbit used inode to check from db to get this offset. Maybe inode=262387 is used
F before when other file was created but reuse this number when 'log1-ghsmu-syslog-log-sinklog-emitter' is created. | don't 4
b think it is by design when Read_from_Head=true. ‘

= https://github.com/fluent/fluent-bit/issues/1875 e i
= https://qgithub.com/fluent/fluent-bit/issues/4895 — —

Diagnosing applications’ I/O behavior through system call observability

https://github.com/fluent/fluent-bit/issues/1875
https://github.com/fluent/fluent-bit/issues/4895

' Describe the bug
when i read the code, i find that fluent-bit use file name and inode to set the checkpoints in db.

(https://github.com/fluent/fluent-bit/blob/master/plugins/in_tail/tail_db.c line 109). the problem is after file (hamed A) is A
'¢ deleted, another file (also named A) created with the same inode. fluent-bit will read the old A's offset.

Diagnosing applications’ I/O behavior through system call observability

https://github.com/fluent/fluent-bit/issues/1875
https://github.com/fluent/fluent-bit/issues/4895

Evaluation - Fluent Bit 1.9

Identifying erroneous actions that lead to data loss

time v proc_name

1,679,308,382,363,981,568

1,679,308,382,364,387,584
1,679,308,382,364,442,624
1,679,308,386,884,300,800
1,679,308,386,889,688,320
1,679,308,386,892,196,096
1,679,308,392,364,854,016

1,679,308,392,365,804,032

1,679,308,402,365,455,104

1,679,308,402,365,598,976

1,679,308,402,365,668,864

1,679,308,406,884,280,320
1,679,308,406,884,805,120
1,679,308,406,885,053,440

1,679,308,422,386,589,952

fluent-bit

fluent-bit

fluent-bit

app

fluent-bit

app

app

fluent-bit

fluent-bit

fluent-bit

fluent-bit

v

syscall

unlink
close
openat

write

v retval

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

v file_tag (dev_no|inode_no|timestamp) v offset

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit 1.9

Identifying erroneous actions that lead to data loss

time v proc_name

1,679,308,382,363,981,568

1,679,308,382,364,387,584
1,679,308,382,364,442,624
1,679,308,386,884,300,800
1,679,308,386,889,688,320
1,679,308,386,892,196,096
1,679,308,392,364,854,016

1,679,308,392,365,804,032

1,679,308,402,365,455,104

1,679,308,402,365,598,976

1,679,308,402,365,668,864

1,679,308,406,884,280,320
1,679,308,406,884,805,120
1,679,308,406,885,053,440

1,679,308,422,386,589,952

fluent-bit

fluent-bit

fluent-bit

app

fluent-bit

app

app

fluent-bit

fluent-bit

fluent-bit

fluent-bit

v

syscall

unlink
close
openat

write

v retval

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

v file_tag (dev_no|inode_no|timestamp) v offset

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

| This is the first log
| line

app.log

app opens a file, writes 26 bytes from offset 0 and closes it

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit 1.9

Identifying erroneous actions that lead to data loss

time

1,679,308,382,363,981,568

1,679,308,382,364,387,584
1,679,308,382,364,442,624
1,679,308,386,884,300,800
1,679,308,386,889,688,320
1,679,308,386,892,196,096
1,679,308,392,364,854,016

1,679,308,392,365,804,032

1,679,308,402,365,455,104

1,679,308,402,365,598,976

1,679,308,402,365,668,864
1,679,308,406,884,280,320
1,679,308,406,884,805,120
1,679,308,406,885,053,440

1,679,308,422,386,589,952

Vv proc_name

fluent-bit

fluent-bit

fluent-bit

app

fluent-bit

app

app

fluent-bit

fluent-bit

fluent-bit

fluent-bit

v syscall

unlink
close
openat

write

v retval

v file_tag (dev_no|inode_no|timestamp) v offset

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032|12

734003212

7340032

7340032

7340032

7340032

7340032

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2157017365367381 =

2157017365367381 0

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit 1.9

Identifying erroneous actions that lead to data loss

time

1,679,308,382,363,981,568

1,679,308,382,364,387,584
1,679,308,382,364,442,624
1,679,308,386,884,300,800
1,679,308,386,889,688,320
1,679,308,386,892,196,096
1,679,308,392,364,854,016

1,679,308,392,365,804,032

1,679,308,402,365,455,104

1,679,308,402,365,598,976

1,679,308,402,365,668,864
1,679,308,406,884,280,320
1,679,308,406,884,805,120
1,679,308,406,885,053,440

1,679,308,422,386,589,952

Vv proc_name

fluent-bit

fluent-bit

fluent-bit

app

fluent-bit

app

app

fluent-bit

fluent-bit

fluent-bit

fluent-bit

v syscall

unlink
close
openat

write

v retval

v file_tag (dev_no|inode_no|timestamp) v offset

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032|12

734003212

7340032

7340032

7340032

7340032

7340032

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2157017365367381 =

2157017365367381 0

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

Diagnosing applications’ I/O behavior through system call observability

| Some new content

Evaluation - Fluent Bit 1.9

Identifying erroneous actions that lead to data loss

time v proc_name v syscall v retval v file_tag (dev_nolinode_no|timestamp) v offset

app.log
1,679,308,382,363,981,568 7340032|12|2156997363734041
1,679,308,382,364,387,584 7340032|12|2156997363734041 app opens a file, writes 26 bytes from offset 0 and closes it
1,679,308,382,364,442,624 7340032|12|2156997363734041
1,679,308,386,884,300,800 fluent-bit 7340032|12|2156997363734041
1,679,308,386,889,688,320 fluent-bit 7340032[12|215699736373404 1 fluent-bit opens the file and reads 26 bytes from offset 0
1,679,308,386,892,196,096 fluent-bit 7340032|12|2156997363734041

app removes the file and fluent-bit closes its file descriptor

1,679,308,402,365,455,104 app openat 3 7340032(12|2157017365367381 =

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

1,679,308,402,365,598,976 app write 16 7340032|12|2157017365367381 0

1,679,308,402,365,668,864 7340032|12|2157017365367381
1,679,308,406,884,280,320 fluent-bit 7340032 2157017365367381
1,679,308,406,884,805,120 fluent-bit 7340032 2157017365367381

1,679,308,406,885,053,440 fluent-bit 7340032 2157017365367381

1,679,308,422,386,589,952 fluent-bit 7340032 2157017365367381

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit 1.9

Identifying erroneous actions that lead to data loss

time v

1,679,308,382,363,981,568

1,679,308,382,364,387,584
1,679,308,382,364,442,624
1,679,308,386,884,300,800
1,679,308,386,889,688,320

1,679,308,386,892,196,096

1,679,308,402,365,455,104

1,679,308,402,365,598,976

1,679,308,402,365,668,864
1,679,308,406,884,280,320
1,679,308,406,884,805,120
1,679,308,406,885,053,440

1,679,308,422,386,589,952

proc_name

fluent-bit

fluent-bit

fluent-bit

fluent-bit

fluent-bit

fluent-bit

fluent-bit

v syscall

openat

write

v retval v file_tag (dev_

7340032

7340032

7340032

7340032

7340032

7340032

3 7340032|12

16 734003212

7340032

7340032

7340032

7340032

7340032

nolinode_no|timestamp) v offset

2156997363734041
2156997363734041
2156997363734041
2156997363734041
2156997363734041

2156997363734041

2157017365367381 =

2157017365367381 0

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

p— a
| Some new content

app.log

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file, jJumps to offset 26 and tries to read

from there, which results in 0 bytes (EOF)

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit 1.9

Identifying erroneous actions that lead to data loss

time v

1,679,308,382,363,981,568

1,679,308,382,364,387,584
1,679,308,382,364,442,624
1,679,308,386,884,300,800
1,679,308,386,889,688,320

1,679,308,386,892,196,096

1,679,308,402,365,455,104

1,679,308,402,365,598,976

1,679,308,402,365,668,864

1,679,308,406,884,280,320
1,679,308,406,884,805,120
1,679,308,406,885,053,440

1,679,308,422,386,589,952

proc_name

fluent-bit

fluent-bit

fluent-bit

fluent-bit

fluent-bit

fluent-bit

fluent-bit

v syscall

openat

write

v retval v file_tag (dev_nolinode_no|timestamp) v offset

7340032

7340032

7340032

7340032

7340032

7340032

3 7340032|12

16 734003212

7340032

7340032

7340032

7340032

7340032

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2156997363734041

2157017365367381 =

2157017365367381 0

2157017365367381

2157017365367381

2157017365367381

2157017365367381

2157017365367381

p— a
| Some new content

app.log

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file, jJumps to offset 26 and tries to read
from there, which results in 0 bytes (EOF)

Erroneous access pattern!

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit

Identifying erroneous actions that lead to data loss

@ Root cause: Fluent Bit tracks the last
processed offset for each file, which is not
reset when the file Is removed

JE -0 - -
sqlite> SELECT * FROM in_tail_files;

353640041 1578994705 0

Database

® Solution: Upon file deletion or rotation, |
remove the entry from the database Commit

in_tail: remove database entries when file get's deleted or rotated (#...
..1875)

@ Validation: Use DlO -tO Validate the CorreCtiOn The following patch fix the old behavior of keep the file references

in the database when the files get deleted from the file system or rotated and

of this erroneous pattern in a recent version

Upon file deletion from the filesystem or it rotation, the entry is removed
from the database.

Signed-off-by: Eduardo Silva <eduardo@Ptreasure-data.com>

Fix

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (205

Identifying erroneous actions that lead to data loss

™ time

v proc_name

syscall

v retval

v file_tag (dev_no|inode_no|timestamp) - offset

1,679,248,356,503,484,160
1,679,248,356,503,664,128

1,679,248,356,503,719,680

7340032

7340032

7340032

2096971503238627

2096971503238627

2096971503238627

1,679,248,361,001,024,256 flb-pipeline

7340032 2096971503238627

1,679,248,361,007,723,776 flb-pipeline 7340032 2096971503238627

1,679,248,361,008,218,112 flb-pipeline 7340032 2096971503238627

1,679,248,366,503,962,624 app unlink

1,679,248,366,506,702,336 flb-pipeline close 7340032 2096971503238627

1,679,248,376,505,657,344 7340032 2096991505568257

1,679,248,376,505,789,184 app write 16 7340032|12|2096991505568257 0

1,679,248,376,505,878,272 7340032 2096991505568257

1,679,248,381,000,811,264 flb-pipeline 7340032 2096991505568257

1,679,248,381,001,634,304 flb-pipeline 7340032 2096991505568257

1,679,248,381,001,834,496 flb-pipeline 7340032|12]2096991505568257

1,679,248,381,002,218,240 flb-pipeline 7340032 2096991505568257

1,679,248,397,000,544,000 flb-pipeline 7340032 2096991505568257

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (205

Identifying erroneous actions that lead to data loss

™ time v

proc_name

v syscall

v retval

v file_tag (dev_no|inode_no|timestamp) - offset

| This is the first log
| line

1,679,248,356,503,484,160
1,679,248,356,503,664,128
1,679,248,356,503,719,680
1,679,248,361,001,024,256
1,679,248,361,007,723,776
1,679,248,361,008,218,112
1,679,248,366,503,962,624

1,679,248,366,506,702,336

1,679,248,376,505,657,344

1,679,248,376,505,789,184

1,679,248,376,505,878,272
1,679,248,381,000,811,264
1,679,248,381,001,634,304
1,679,248,381,001,834,496
1,679,248,381,002,218,240

1,679,248,397,000,544,000

flo-pipeline

flb-pipeline
flb-pipeline

app

flb-pipeline

app

flo-pipeline

flb-pipeline
flb-pipeline
flb-pipeline

flb-pipeline

unlink

close

write

Diagnosing applications’ I/O behavior through system call observability

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

734003212

7340032

7340032

7340032

7340032

7340032

7340032

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096991505568257

2096991505568257 0

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

app.log

app opens a file, writes 26 bytes from offset 0 and closes it

Evaluation - Fluent Bit (205

Identifying erroneous actions that lead to data loss

™ time v

proc_name

v syscall

v retval

v file_tag (dev_no|inode_no|timestamp) - offset

1,679,248,356,503,484,160
1,679,248,356,503,664,128
1,679,248,356,503,719,680
1,679,248,361,001,024,256
1,679,248,361,007,723,776
1,679,248,361,008,218,112
1,679,248,366,503,962,624

1,679,248,366,506,702,336

1,679,248,376,505,657,344

1,679,248,376,505,789,184

1,679,248,376,505,878,272
1,679,248,381,000,811,264
1,679,248,381,001,634,304
1,679,248,381,001,834,496
1,679,248,381,002,218,240

1,679,248,397,000,544,000

flo-pipeline

flb-pipeline
flb-pipeline

app

flb-pipeline

app

flo-pipeline

flb-pipeline
flb-pipeline
flb-pipeline

flb-pipeline

unlink

close

write

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

734003212

7340032

7340032

7340032

7340032

7340032

7340032

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096991505568257

2096991505568257 0

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (205

Identifying erroneous actions that lead to data loss

™ time v

proc_name

v syscall

v retval

v file_tag (dev_no|inode_no|timestamp) - offset

1,679,248,356,503,484,160
1,679,248,356,503,664,128
1,679,248,356,503,719,680
1,679,248,361,001,024,256
1,679,248,361,007,723,776
1,679,248,361,008,218,112
1,679,248,366,503,962,624

1,679,248,366,506,702,336

1,679,248,376,505,657,344

1,679,248,376,505,789,184

1,679,248,376,505,878,272
1,679,248,381,000,811,264
1,679,248,381,001,634,304
1,679,248,381,001,834,496
1,679,248,381,002,218,240

1,679,248,397,000,544,000

flo-pipeline

flb-pipeline
flb-pipeline

app

flb-pipeline

app

flo-pipeline

flb-pipeline
flb-pipeline
flb-pipeline

flb-pipeline

unlink

close

write

7340032

7340032

7340032

7340032

7340032

7340032

7340032

7340032

734003212

7340032

7340032

7340032

7340032

7340032

7340032

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096991505568257

2096991505568257 0

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (205

Identifying erroneous actions that lead to data loss

™ time

v proc_name

v syscall

v retval

v file_tag (dev_no|inode_no|timestamp) - offset

1,679,248,356,503,484,160
1,679,248,356,503,664,128
1,679,248,356,503,719,680
1,679,248,361,001,024,256
1,679,248,361,007,723,776
1,679,248,361,008,218,112
1,679,248,366,503,962,624

1,679,248,366,506,702,336

1,679,248,376,505,657,344

1,679,248,376,505,789,184

1,679,248,376,505,878,272
1,679,248,381,000,811,264
1,679,248,381,001,634,304
1,679,248,381,001,834,496
1,679,248,381,002,218,240

1,679,248,397,000,544,000

flb-pipeline

flb-pipeline
flb-pipeline

app

flb-pipeline

app

flo-pipeline

flb-pipeline
flb-pipeline
flb-pipeline

flb-pipeline

unlink

close

write

734003212

7340032|12

734003212

7340032

7340032

7340032

7340032

7340032

12

734003212

7340032

7340032

7340032

7340032

7340032

7340032

12

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096991505568257

2096991505568257 0

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

app.log

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (205

Identifying erroneous actions that lead to data loss

™ time v proc_name

syscall

v retval v file_tag (dev_nolinode_no|timestamp) v offset

1,679,248,356,503,484,160
1,679,248,356,503,664,128
1,679,248,356,503,719,680
1,679,248,361,001,024,256
1,679,248,361,007,723,776

1,679,248,361,008,218,112

1,679,248,376,505,657,344

1,679,248,376,505,789,184

1,679,248,376,505,878,272
1,679,248,381,000,811,264
1,679,248,381,001,634,304
1,679,248,381,001,834,496

1,679,248,381,002,218,240

1,679,248,397,000,544,000

flb-pipeline

flb-pipeline

flb-pipeline

flo-pipeline
flb-pipeline
flb-pipeline
flb-pipeline

flb-pipeline

write

7340032

7340032

7340032

7340032

7340032

7340032

7340032

16 734003212

7340032

7340032

7340032

7340032

7340032

7340032

Diagnosing applications’ I/O behavior through system call observability

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096991505568257

2096991505568257 0

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

app.log

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file and reads 16 bytes from offset 0

Evaluation - Fluent Bit (205

Identifying erroneous actions that lead to data loss

™ time

v proc_name

syscall

v retval

v file_tag (dev_no|inode_no|timestamp) - offset

1,679,248,356,503,484,160
1,679,248,356,503,664,128
1,679,248,356,503,719,680
1,679,248,361,001,024,256
1,679,248,361,007,723,776

1,679,248,361,008,218,112

1,679,248,376,505,657,344

1,679,248,376,505,789,184

1,679,248,376,505,878,272
1,679,248,381,000,811,264
1,679,248,381,001,634,304
1,679,248,381,001,834,496
1,679,248,381,002,218,240

1,679,248,397,000,544,000

flo-pipeline

flb-pipeline

flb-pipeline

flo-pipeline
flb-pipeline
flb-pipeline
flb-pipeline

flb-pipeline

write

7340032

7340032

7340032

7340032

7340032

7340032

7340032

16 734003212

7340032

7340032

7340032

7340032

7340032

7340032

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096971503238627

2096991505568257

2096991505568257 0

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

2096991505568257

app.log

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file and reads 16 bytes from offset 0

Correct access pattern!

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit

Identifying erroneous actions that lead to data loss

® DIO helps users diagnose incorrect I/0O behavior from applications and find the
root cause for dependabillity iIssues such as data loss

@ DIO helps validate the corrections applied to the applications’ implementation

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB

Finding the root cause of performance anomalies

@ RocksDB: an embedded key-value store

® Problem: RocksDB clients observe high tail latencies (1 & 3)
> Reproducible with db_bench benchmark

Latency (ms)

00 1502 1504 15:06 1508 — 15:10 1512 1514
Time (HH:MM)

99th percentile latency for RocksDB client operations.

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB

Finding the root cause of performance anomalies

~ 2NN
T =X k=X K=Xs)
|

Latency (ms)

rocksdb
‘low0

ro ksdb
:lowl

ro ksdb
:low2

8
4
8
4
8
4
ro ksdb 8
flow3 4
ro ksdb 8
dfowd 4
8

4

8

4

8

4

ro ksdb

ro ksdb
lowé
ksdb

rc%cg?1

Hevents

E

o OO OO OO OO OO OO

2 OO?
0 :8

’ ™ FrSn

15:05 15:06 15:07 15:08 15:09

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB R P

Finding the root cause of performance anomalies

~ 2NN
T =X k=X K=Xs)
|

Latency (ms)

rocksdb
‘low0

ro ksdb
:lowl

ro ksdb
:low2

8
4
8
4
8
4
ro ksdb 8
flow3 4
ro ksdb 8
dfowd 4
8

4

8

4

8

4

ro ksdb

ro ksdb
lowé
ksdb

rc%cg?1

Hevents

E

o OO OO OO OO OO OO

2 OO?
0 :8

’ ™ FrSn

15:05 15:06 15:07 15:08 15:09

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Diagnosing applications’ I/O behavior through system call observability

I g o B R 2 ,,,,,,,,,,,,, 4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, al

Evaluation - RocksDB R S

Finding the root cause of performance anomalies

T g e
oo uoul
|

Latency (ms)

rocksdb
:low0

ksdb
"low1

rocksdb
lowZ2

8
4
8
4
8
4
rocksdb 8

i Jow3 4
+ rocksdb 8
S clow4” 4
2 rocksdb 8
2 low5 4
8

4

8

4

I

o OO OO OO OO OO OO

5y OO
&
0 ':‘ 6
O
Q.
c »

rocksdb
:lowb

ksdlb
Flush o K

’ ™ FrSn

15:05 15:06 15:07 15:08 15:09

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Diagnosing applications’ I/O behavior through system call observability

~ 2NN
T =X k=X K=Xs)
|

I g o B R 2 ,,,,,,,,,,,,, 4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, al

Evaluation - RocksDB R S

Finding the root cause of performance anomalies

Latency (ms)

rocksdb 8
dow0O 4

rocksdb 8
lowl 4

rocksdb 8
flow2 4

rocksdb 8
Jow3 4

rocksdb 8
fowd 4

rocksdb 8
Jow5 4

8

4

8

4

P
c
o
S
3]
@
o
S
o
O

I

rocksdb
:lowb

ksdlb
"high0

o OO OO OO OO OO OO

2 OO?
0 =8

’ ™ FrSn

15:05 15:06 15:07 15:08 15:09

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Diagnosing applications’ I/O behavior through system call observability

T g e

Latency (ms)
O OO 1O WL

Evaluation - RocksDB R P

Finding the root cause of performance anomalies

rocksdb
‘low0

ro ksdb
:lowl

ro ksdb
:low2

ro ksdb
:low3

ro ksdb
:low4

ro ksdb

ro ksdb
:lowb

ksdb

Flush o SRR

[P cib_bench 200007
10000

15:05 od 15:06 15:07

. LJ P13 3
' RO
"’ c.’t"o M SR RATDATR IS St
O e ¢
® . ;
- - X 0 fco¥e] W
' 3

a.'u.«c,‘ S0 o O GO0 |
|
‘e

“"f'.-.iifo

‘... ('(.'.'.

e O (L e 0 4 SOt

o X
(e .
®
e “' ‘.‘.. ‘..‘('(400 .‘..

o“?‘tc‘w‘ul";“ (5¢K Y 2238”0

P
c
o
2
3]
@
o
S
o
O

3 o [

| ¥ oot
A e €2 e (306 .'““ e

\ |

o OO OO OO OO OO OO

i

00 B£OO OO0 OO OO B0 OO0 B0

D
o
-
o

@®© (o (o

0
0 «
.o,o ®.%%)TeY (v HOSOY
o) n® O O 008Y Ocxt (D
O

Time (HH:M 1508 1509

Syscalls issued by RocksDB over time, aggregated by thread name.

threads perform I/O simultaneously, db_bench performance

Diagnosing applications’ I/O behavior through system call observability

P
c
o
2
3]
@
o
S
o
O

ksdb

Flush o M)

[P cib_bench 20000%7%
10000

7 35

g3of 1 ©® M

D] e e | T Y Y S A L

3 20H MMM Tt WO

_ S RO LA LU A8 A8 TR B | -

E I t R D B E 1.0- 777777 s I G 777; 7777777 o ; 7777777 I’ 2 7" 777777' 77777 77777; 7777777 B ; 7777777 s o —

I 15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14
Va ua |On OCI(S Time (HH:MM)

Finding the root cause of performance anomalies

rocksdb
low0
rocksdb
lowl
rocksdb
low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:lowb
rocksdb
lowb

h

€
.o.ﬂ O, A 2

500 B0 D00 OO PO PO P00 PO
OO OO OO OO OO OO OO OO
OO OO OO OO OO OO OO OO
oo O OO OO OO OO OO OO
B8 ﬁ
-
U

@®© (o (o
DM

0
e °.° ®
00 (> O ROQOWONRG . VO
0
.‘.. .. “.. J“".
°

15:05 od 15:06 o 15:07 15:08 15799

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

threads perform I/O simultaneously, db_bench performance

threads perform I/O simultaneously, db_bench performance

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB

Finding the root cause of performance anomalies

@ Root cause: Latency spikes occur when threads compete for shared disk
bandwidth, leading to pertformance contention

@ This is the phenomenon identified in SILK[1] and observable with DIO without
any code instrumentation

[1] BALMAU, Oana, et al. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In: USENIX Annual Technical Conference. 2019. p. 753-760.

Diagnosing applications’ I/O behavior through system call observability

Conclusion

@ DIO is a generic tool for observing and diagnosing |/O interactions between
applications and in-kernel POSIX storage systems

@ Helps observe /0O issues, find their root causes and validate their fixes

@ Experiments, with two widely-used systems, show that DIO enables
» observing erroneous |/O access patterns that lead to data loss
» identifying I/O contention that leads to high tail latency

Diagnosing applications’ I/O behavior through system call observability

Future directions

@ Simplify analysis with new automated correlation algorithms
@® Explore other applications for uncovering new /O ISsues

@ Further analyze DIO’s performance overhead and explore new optimizations

Diagnosing applications’ I/O behavior through system call observability

DIO

Diagnosing applications’ /0 behavior through system call observability

@ DIO is publicly available at
» Github: github.com/dsrhaslab/dio

» Website: dio-tool.netlify.app

» Contact: tania.c.araujo@inesctec.pt
(=] 'IEI
r I|- -l' -

Pk L

E d!"n .

Diagnosing applications’ I/O behavior through system call observability

https://github.com/dsrhaslab/dio
http://dio-tool.netlify.app
mailto:tania.c.araujo@inesctec.pt

Diagnosing applications’ 1/0
behavior through system call
observability

Tania Esteves, Ricardo Macedo, Rui Oliveira and Joao Paulo
INESC TEC & University of Minho

5th Workshop on Data-Centric Dependability and Security (DCDS’23)

INESC

