
This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.

February 22–24, 2022 • Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings
of the 20th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

Paio: General, Portable I/O Optimizations With
Minor Application Modification

Ricardo Macedo, INESC TEC and University of Minho; Yusuke Tanimura
and Jason Haga, AIST; Vijay Chidambaram, UT Austin and VMware Research;

José Pereira and João Paulo, INESC TEC and University of Minho
https://www.usenix.org/conference/fast22/presentation/macedo

PAIO: General, Portable I/O Optimizations With Minor Application Modifications

Ricardo Macedo, Yusuke Tanimura†, Jason Haga†, Vijay Chidambaram‡, José Pereira, João Paulo
INESC TEC and University of Minho †AIST ‡UT Austin and VMware Research

Abstract
We present PAIO, a framework that allows developers to im-
plement portable I/O policies and optimizations for different
applications with minor modifications to their original code
base. The chief insight behind PAIO is that if we are able to
intercept and differentiate requests as they flow through dif-
ferent layers of the I/O stack, we can enforce complex storage
policies without significantly changing the layers themselves.
PAIO adopts ideas from the Software-Defined Storage com-
munity, building data plane stages that mediate and optimize
I/O requests across layers and a control plane that coordinates
and fine-tunes stages according to different storage policies.
We demonstrate the performance and applicability of PAIO
with two use cases. The first improves 99th percentile latency
by 4× in industry-standard LSM-based key-value stores. The
second ensures dynamic per-application bandwidth guaran-
tees under shared storage environments.

1 Introduction

Data-centric systems such as databases, key-value stores
(KVS), and machine learning engines have become an integral
part of modern I/O stacks [12, 19, 32, 43, 53, 55]. Good perfor-
mance for these systems often requires storage optimizations
such as I/O scheduling, differentiation, and caching. However,
these optimizations are implemented in a sub-optimal manner,
as these are tightly coupled to the system implementation, and
can interfere with each other due to lack of global context.
For example, optimizations such as differentiating foreground
and background I/O to reduce tail latency are broadly appli-
cable; however, the way they are implemented in KVS today
(e.g., SILK [16]) requires a deep understanding of the system,
and are not portable across other KVS. Similarly, optimiza-
tions from applications deployed at shared infrastructures may
conflict due to not being aware of each other [27, 51, 61, 62].

In this paper, we argue that there is a better way to imple-
ment such storage optimizations. We present PAIO, a user-
level framework that enables building portable and generally
applicable storage optimizations by adopting ideas from the
Software-Defined Storage (SDS) community [38]. The key
idea is to implement the optimizations outside the applica-
tions, as data plane stages, by intercepting and handling the
I/O performed by these. These optimizations are then con-
trolled by a logically centralized manager, the control plane,
that has the global context necessary to prevent interference
among them. PAIO does not require any modifications to the

kernel (critical for deployment). Using PAIO, one can decou-
ple complex storage optimizations from current systems, such
as I/O differentiation and scheduling, while achieving results
similar to or better than tightly coupled optimizations.

Building PAIO is not trivial, as it requires addressing multi-
ple challenges that are not supported by current solutions. To
perform complex I/O optimizations outside the application,
PAIO needs to propagate context down the I/O stack, from
high-level APIs down to the lower layers that perform I/O
in smaller granularities.1 It achieves this by combining ideas
from context propagation [36], enabling application-level in-
formation to be propagated to data plane stages with minor
code changes and without modifying existing APIs.

PAIO requires the design of new abstractions that allow dif-
ferentiating and mediating I/O requests between user-space
I/O layers. These abstractions must promote the implementa-
tion and portability of a variety of storage optimizations. PAIO
achieves this with four main abstractions. The enforcement
object is a programmable component that applies a single
user-defined policy, such as rate limiting or scheduling, to
incoming I/O requests. PAIO characterizes and differentiates
requests using context objects, and connects I/O requests, en-
forcement objects and context objects through channels. To
ensure coordination (e.g., fairness, prioritization) across inde-
pendent storage optimizations, the control plane, with global
visibility, fine-tunes the enforcement objects by using rules.

With these new features and abstractions, system designers
can use PAIO to develop custom-made SDS data plane stages.
To demonstrate this, we validate PAIO under two use cases.
First, we implement a stage in RocksDB [9] and demonstrate
how to prevent latency spikes by orchestrating foreground
and background tasks. Results show that a PAIO-enabled
RocksDB improves 99th percentile latency by 4× under dif-
ferent workloads and testing scenarios (e.g., different storage
devices, with and without I/O bandwidth restrictions) when
compared to baseline RocksDB, and achieves similar tail la-
tency performance when compared to SILK [16]. Our ap-
proach demonstrates that complex I/O optimizations, such
as SILK’s I/O scheduler, can be decoupled from the original
layer to a self-contained, easier to maintain, and portable stage.
Second, we apply PAIO to TensorFlow [11] and show how to
achieve dynamic per-application bandwidth guarantees under
a real shared-storage scenario at the ABCI supercomputer [1].
Results show that all PAIO-enabled TensorFlow instances are

1We refer to the term “layer” as a component of a given I/O stack that
handles I/O requests (e.g., application, KVS, file system, device driver).

USENIX Association 20th USENIX Conference on File and Storage Technologies 413

provisioned with their bandwidth goals. This shows that PAIO
enables enforcing storage policies with system-wide visibility
and holistic control.

In summary, the paper makes the following contributions:
• PAIO, a user-level framework for building programmable

and dynamically adaptable data plane stages (§3-§7). PAIO
is publicly available at https://github.com/dsrhaslab/paio.

• Implementation of two stages to (1) reduce latency spikes
in an LSM KVS; and (2) achieve per-application bandwidth
guarantees under shared storage settings (§8).

• Experimental results demonstrating PAIO’s performance
and applicability under synthetic and real scenarios (§9).

2 Motivation and Challenges

We now describe the problems of system-specific I/O opti-
mizations and how these drive the proposal of PAIO.
Problem 1: tightly coupled optimizations. Most I/O opti-
mizations are single-purposed as they are tightly integrated
within the core of each system [16, 29, 50]. Implementing
these optimizations requires deep understanding of the sys-
tem’s internal operation model and profound code refactoring,
limiting their maintainability and portability across systems
that would equally benefit from them. For instance, to re-
duce tail latency spikes at RocksDB, an industry-standard
LSM-based KVS, SILK proposes an I/O scheduler to control
the interference between foreground and background tasks.
However, applying this optimization over RocksDB required
changing several core modules made of thousands of LoC,
including background operation handlers, internal queuing
logic, and thread pools [5, 15]. Further, porting this optimiza-
tion to other KVS (e.g., LevelDB [21], PebblesDB [47]) is not
trivial, as even though they share the same high-level design,
the internal I/O logic differs across implementations (e.g.,
data structures [20, 47], compaction algorithms [34, 47]).
Solution: decouple optimizations. I/O optimizations should
be disaggregated from the system’s internal logic and moved
to a dedicated layer, becoming generally applicable and
portable across different scenarios.
Resulting challenge: rigid interfaces. Decoupling optimiza-
tions comes with a cost, as we lose the granularity and internal
application knowledge present in system-specific optimiza-
tions. Specifically, the operation model of conventional I/O
stacks requires layers to communicate through rigid interfaces
that cannot be easily extended, discarding information that
could be used to classify and differentiate requests at different
levels of granularity [13]. For instance, let us consider the I/O
stack depicted in Fig. 1 made of an Application, a KVS, and a
POSIX-compliant File System. POSIX operations submitted
from the KVS can be originated from different workflows,
including foreground (a) and background flows i.e., flushes
(b) and compactions (c). The File System however, can only
observe the request’s size and type (i.e., read and write), mak-

Application

File System

Key-Value Store
foreground flows

flush flowscompaction flows

KVStore operation
Workflow ID: 75476
Operation type: read
Operation size: 4096

KVStore operation
Workflow ID: 75482
Operation type: write
Operation size: 4096

KVStore operation
Workflow ID: 75490
Operation type: read
Operation size: 4096

KVStore operation
Workflow ID: 75476
Operation type: read
Operation size: 4096
Context: foreground task

KVStore operation
Workflow ID: 75482
Operation type: write
Operation size: 4096
Context: flush

KVStore operation
Workflow ID: 75490
Operation type: read
Operation size: 4096
Context: compaction L1-L2

b

a

c

1

2

3

Figure 1: Operations submitted from different workflows. Exam-
ple of the operation flow of a multi-layered I/O stack. Left side de-
picts the regular information that can be extracted from operations
between the KVS and File System, while the right side propagates
additional request information throughout layers.

ing it impossible to infer its origin. Implementing SILK’s I/O
scheduler at a lower layer (e.g., File System, layer between
the KVS and the File System), would make the optimization
portable to other KVS solutions. However, it would be inef-
fective since it could not differentiate between foreground
and background operations.

Solution: information propagation. Application-level infor-
mation must be propagated throughout layers to ensure that
decoupled optimizations can provide the same level of control
and performance as system-specific ones.

Resulting challenge: kernel-level layers. While implement-
ing SILK’s I/O scheduler at the kernel (e.g., file system, block
layer) would promote its applicability across other KVS so-
lutions, it poses several disadvantages. First, for application-
level information to be propagated to these layers, it requires
breaking user-to-kernel (i.e., POSIX) and kernel-internal inter-
faces (e.g., VFS, block layer, page cache), decreasing portabil-
ity and compatibility [13]. Further, kernel-level development
is more restricted and error prone than in user-level [42, 56].
Finally, these optimizations would be ineffective under kernel-
bypass storage stacks (e.g., SPDK [10], PMDK [8]), since
I/O requests are submitted directly from the application (user-
space) to the storage device.

Solution: actuate at user-level. I/O optimizations should
be implemented at a dedicated user-level layer, promoting
portability across different systems and scenarios, and easing
information propagation throughout layers.

Problem 2: partial visibility. Optimizations implemented in
isolation are oblivious of other systems that compete for the
same storage resources. Under shared infrastructures (e.g.,
cloud, HPC), this lack of coordination can lead to conflict-
ing optimizations [27, 62], I/O contention, and performance
variation for both applications and storage backends [51, 61].

Solution: global control. Optimizations should be aware of
the surrounding environment and operate in coordination to
ensure holistic control of I/O workflows and shared resources.

414 20th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/dsrhaslab/paio

3 PAIO in a Nutshell

PAIO is a framework that enables system designers to build
custom-made SDS data plane stages. A data plane stage built
with PAIO targets the workflows of a given user-level layer,
enabling the classification and differentiation of requests and
the enforcement of different storage mechanisms according
to user-defined storage policies. Examples of such policies
can be as simple as rate limiting greedy tenants to achieve
resource fairness, to more complex ones as coordinating work-
flows with different priorities to ensure sustained tail latency.
PAIO’s design is built over five core principles.
General applicability. To ensure applicability across differ-
ent I/O layers, PAIO stages are disaggregated from the internal
system logic, contrary to tightly coupled solutions.
Programmable building blocks. PAIO follows a decoupled
design that separates the I/O mechanisms from the policies
that govern them, and provides the necessary abstractions for
building new storage optimizations to employ over requests.
Fine-grained I/O control. PAIO classifies, differentiates, and
enforces I/O requests with different levels of granularity, en-
abling a broad set of policies to be applied over the I/O stack.
Stage coordination. To ensure stages have coordinated ac-
cess to resources, PAIO exposes a control interface that en-
ables the control plane to dynamically adapt each stage to
new policies and workload variations.
Low intrusiveness. Porting I/O layers to use PAIO requires
none to minor code changes.

3.1 Abstractions in PAIO

PAIO uses four main abstractions, namely enforcement ob-
jects, channels, context, and rules.
Enforcement object. An enforcement object is a self-contai-
ned, single-purposed mechanism that applies custom I/O logic
over incoming I/O requests. Examples of such mechanisms
can range from performance control and resource manage-
ment such as token-buckets and caches, data transformations
as compression and encryption, to data management (e.g.,
data prefetching, tiering). This abstraction provides to system
designers the flexibility and extensibility for developing new
mechanisms tailored for enforcing specific storage policies.
Channel. A channel is a stream-like abstraction through
which requests flow. Each channel contains one or more en-
forcement objects (e.g., to apply different mechanisms over
the same set of requests) and a differentiation rule that maps
requests to the respective enforcement object to be enforced.
Context object. A context object contains metadata that char-
acterizes a request. It includes a set of elements (or classifiers),
such as the workflow id (e.g., thread-ID), request type (e.g.,
read, open, put, get), request size, and the request context,
which is used to express additional information of a given
request, such as determining its origin, context, and more. For

C
ha

nn
el

2

C
ha

nn
el

1

C
ha

nn
el

3

C
ha

nn
el

4

I/O enforcement

I/O differentiation
Control
Plane

P1

P2

P3

Monitoring flows
Rules

Workflows

PAIO Stage
App1

Stage

App2

Stage

App3

Stage

File System

Figure 2: PAIO overview. PAIO is a user-level framework that al-
lows implementing programmable and adaptable data plane stages.

each request, PAIO generates the corresponding Context ob-
ject that is used for classifying, differentiating, and enforcing
the request over the respective I/O mechanisms.
Rule. In PAIO, a rule represents an action that controls the
state of a data plane stage. Rules are submitted by the control
plane and are organized in three types: housekeeping rules
manage the internal stage organization, differentiation rules
classify and differentiate I/O requests, enforcement rules ad-
just enforcement objects upon workload variations.

3.2 High-level Architecture

Fig. 2 outlines PAIO’s high-level architecture. It follows a
decoupled design that separates policies, implemented at an
external control plane, from the mechanisms that enforce
them, implemented at the data plane stage. PAIO targets I/O
layers at the user-level. Stages are embedded within layers, in-
tercepting all I/O requests and enforcing user-defined policies.
To achieve this, PAIO is organized in four main components.
Stage interface. Applications access stages through a stage
interface (§6.1) that routes all requests to PAIO before being
submitted to the next I/O layer (i.e., App3 →PAIO →File
System). For each request, it generates a Context object with
the corresponding I/O classifiers.
Differentiation module. The differentiation module (§4) clas-
sifies and differentiates requests based on their Context object.
To ensure requests are differentiated with fine-granularity,
we combine ideas from context propagation [36] to enable
application-level information, only accessible to the layer it-
self, to be propagated to PAIO, broadening the set of policies
that can be enforced.
Enforcement module. The enforcement module (§5) is respon-
sible for applying the actual I/O mechanisms over requests.
It is organized with channels and enforcement objects. For
each request, the module selects the channel and enforcement
object that should handle it. After being enforced, requests
are returned to the original data path and submitted to the next
I/O layer (File System).
Control interface. PAIO exposes a control interface (§6.1) that
enables the control plane to (1) orchestrate the stage lifecycle
by creating channels, enforcement objects, and differentiation
rules, and (2) ensure all policies are met by continuously mon-
itoring and fine-tuning the stage. The control plane provides
global visibility, ensuring that stages are controlled holisti-

USENIX Association 20th USENIX Conference on File and Storage Technologies 415

File System

RocksDB

PAIO Stage

C
ha

nn
el

N ...

C
on

tr
ol

 A
PIforeground flows

compaction flows flush flows token channel
hash1 channel1
hash2 channel2

select_channel(ctx)

... ...

I/O differentiation

0

1

2

6

PAIO Stage

SQ

EO

EO

C
ha

nn
el

1

3

4
5

3

2

4
SQ EO

EO

select_object(ctx)

obj_enf

Application 1

1

Figure 3: PAIO operation flow. Black circles depict the execution
flow of a request in the PAIO stage. White circles depict the control
flow between the SDS control plane and the stage.

cally. Exposing this interface allows stages to be managed by
existing control planes [22, 35, 54].

3.3 A Day in the Life of a Request

Before delving into PAIO’s internal modules, we first illus-
trate how it orchestrates the workflows of a given layer. We
consider the I/O stack depicted on Fig. 3, which is made
of an Application, RocksDB, a PAIO stage, and a POSIX-
compliant File System; and the enforcement of the following
policy: “limit the rate of RocksDB’s flush operations to X
MiB/s”. RocksDB’s background workflows generate flush and
compaction jobs, which are translated in multiple POSIX oper-
ations that are submitted to the File System. Flushes are trans-
lated in writes, while compactions in reads and writes.

At startup time, RocksDB initializes the PAIO stage, which
connects to an already deployed control plane. The control
plane submits housekeeping rules to create a channel and an
enforcement object that rate limits requests at X MiB/s (1).
It also submits differentiation rules (2) to determine which
requests should be handled by the stage, namely flush-based
writes. Details on how the differentiation and enforcement
processes work are given in §4 and §5, respectively.

At execution time, RocksDB propagates the context at
which a given operation is created (0) and redirects all write
operations to PAIO (1) . Through 1 , we ensure that only
write operations are enforced at PAIO, while with 0 , we
differentiate flush-marked writes from others that can be
triggered by compactions jobs. Upon a flush-based write, a
Context object is created with its request type (write), con-
text (flush), and size, and submitted, along the request, to the
stage (1). Then, the stage selects the channel (2) to be used,
enqueues the request (3), and selects the enforcement object
to service the request (4), which in turn rate limits the request
at X MiB/s (5). After enforcing the request (6), the original
write operation is submitted to the File System .

The control plane continuously monitors and fine-tunes the
data plane stage. Periodically, it collects from the stage the
throughput at which requests are being serviced (3). Based
on this metric, the control plane may adjust the enforcement
object to ensure flush operations flow at X MiB/s, generating
enforcement rules with new configurations (4).

Table 1: Examples of the type of requests a channel receives.

Channel Workflow ID Request context Request type

channel1 flow1 — —
channel2 — background tasks read
channel3 flow5 compaction write

4 I/O Differentiation

PAIO’s differentiation module provides the means to classify
and differentiate requests at different levels of granularity,
namely per-workflow, request type, and request context. The
process for differentiating requests is achieved in three phases.
Startup time. At startup time, the user defines how requests
are differentiated and who should handle each request. First,
it defines the granularity of the differentiation, by specifying
which I/O classifiers should be used to differentiate requests.
For example, to provide per-workflow differentiation PAIO
only considers the Context’s workflow id classifier, while
to differentiate requests based on their context and type, it
uses both request context and request type classifiers. Second,
the user attributes specific I/O classifiers to each channel to
determine the set of requests that a given channel receives.
Table 1 provides examples of this specification: channel1 only
receives requests from flow1, while channel2 only handles
read requests originated from background tasks; channel3
receives compaction-based writes from flow5. To generate a
unique identifier that maps requests to channels, the classifiers
can be concatenated into a string or hashed into a fixed-size
token (§7). Further, this process can be set by the control plane
(i.e., differentiation rules) or configured at stage creation.
Execution time. The second phase differentiates the I/O re-
quests submitted to the stage and routes them to the respective
channel to be enforced. This is achieved in two steps.
Channel selection. For each incoming request, which is ac-
companied by its Context object, PAIO selects the channel
that must service it (Fig. 3, 2). PAIO verifies the Context’s
I/O classifiers and maps the request to the respective channel
to be enforced. This mapping is done as described in the first
phase of the differentiation process.
Enforcement object selection. As each channel can contain
multiple enforcement objects, analogously to channel selec-
tion, PAIO selects the correct object to service the request
(Fig. 3, 4). For each request, the channel verifies the Context’s
classifiers and maps the request to the respective enforcement
object, which will then employ its I/O mechanism (§5).
Context propagation. Several I/O classifiers, such as work-
flow id, request type, and size, are accessible from observing
raw I/O requests. However, application-level information, that
is only accessible to the layer that submits the I/O requests,
could be used to expand the policies to be enforced over the
I/O stack. An example of such information, as depicted in
Fig.1, is the operation context, which allows to determine the
origin or context of a given request, i.e., if it comes from a
foreground or background task, flush or compaction, or other.

416 20th USENIX Conference on File and Storage Technologies USENIX Association

As such, PAIO enables the propagation of additional in-
formation from the targeted layer to the stage. It combines
ideas from context propagation, a commonly used technique
that enables a system to forward context along its execution
path [36, 37, 41, 62], and applies them to ensure fine-grained
control over requests. To achieve this, system designers instru-
ment the data path of the targeted layer where the information
can be accessed, and make it available to the stage through
the process’s address space, shared memory, or thread-local
variables. The information is included at the creation of the
Context object as the request context classifier. Propagating
the context without this method would require changing all
core modules and function signatures between where the in-
formation can be found and its submission to the stage.

As an example, consider the I/O stack of Fig. 3. To deter-
mine the origin of POSIX operations submitted by Rocks-
DB’s background workflows, system designers instrument
the RocksDB’s critical path responsible for managing flush
or compaction jobs (0) to capture their context. This infor-
mation is then propagated to the stage interface, where the
Context object is created with all I/O classifiers, including the
request context, and submitted to the stage (1).

Note that this step is optional, as it can be skipped for poli-
cies that do not require additional information to be enforced.

5 I/O Enforcement

The enforcement module provides the building block for de-
veloping the actual I/O mechanisms that will be employed
over requests. It is composed of several channels, each con-
taining one or more enforcement objects.

As depicted in Fig. 3, requests are moved to the selected
channel and placed in a submission queue (3) . For each
dequeued request, PAIO selects the correct enforcement ob-
ject (4) and applies its I/O mechanism (5) . Examples of
these mechanisms include token-buckets, caches, encryption
schemes, and more; we discuss how to build enforcement
objects in §6.3 Since several mechanisms can change the
original request’s state, such as data transformations (e.g., en-
cryption, compression), during this phase, the enforcement
object generates a Result that encapsulates the updated ver-
sion of the request, including its content and size. The Result
object is then returned to the stage interface, that unmarshalls
it, inspects it, and routes it to the original data path (6). Af-
ter this process, PAIO ensured that the request has met the
objectives of the specified policy.

Optimizations. Depending on the policies and mechanisms
to be employed, PAIO can enforce requests using only their
I/O classifiers. While data transformations are directly appli-
cable over the request’s content, performance-driven mech-
anisms such as token-buckets and schedulers, only require
specific request metadata to be enforced (e.g., type, size, pri-
ority, storage path). As such, to avoid adding overhead to the

Table 2: Interface definitions of PAIO.

1† paio_init() Initialization of PAIO stage
enforce(ctx,r) Enforce context ctx and request r

2?
obj_init(s) Initialize enforcement object with state s
obj_enf(ctx,r) Enforce I/O mechanism over ctx and r
obj_config(s) Configure enforcement object with state s

3∗

stage_info() Get data plane stage information
hsk_rule(t) Housekeeping rule with tuple t
dif_rule(t) Differentiation rule with tuple t
enf_rule(id,s) Enf. rule over enf. object id with state s
collect() Collect statistics from data plane stage

†Stage API; ?Enforcement object API; ∗Control API.

system execution, PAIO allows for the request’s content to be
copied to the stage’s execution path only when necessary.

6 PAIO Interfaces and Usage

We now detail how PAIO interacts with I/O layers and control
planes, how to integrate PAIO in user-level layers, and how to
build enforcement objects.

6.1 Interfaces

Stage interface. PAIO provides an application programming
interface to establish the connection between an I/O layer
and PAIO’s internal mechanisms. As depicted in Table 2, it
presents two functions: paio_init initializes a stage, which
connects to the control plane for internal stage management
and defining how workflows should be handled; enforce in-
tercepts requests from the layer and routes them, along the
associated Context object, to the stage (§6.2 details how re-
quests should be intercepted and submitted to PAIO). After
enforcing the request, the stage outputs the enforcement result
and the layer resumes the original execution path.

Control interface. Communication between stages and the
control plane is achieved through five calls, as depicted in
Table 2. A stage_info call lists information about the stage,
including the stage identifier and process identifier (PID).
Rule-based calls are used for managing and tuning the data
plane stage. Housekeeping rules (hsk_rule) manage the stage
lifecycle (e.g., create channels and enforcement objects), dif-
ferentiation rules (dif_rule) map requests to channels and
enforcement objects, and enforcement rules (enf_rule) dy-
namically adjust the internal state (s) of a given enforcement
object (id) upon workload and policy variations. The con-
trol plane also monitors stages though a collect call, that
gathers key performance metrics of all workflows (e.g., IOPS,
bandwidth) and can be used to tune the data plane stage.

This interface enables the control plane to define how PAIO
stages handle I/O requests. Nonetheless, concerns related to
the dependability of data plane stages, as well as the resolu-
tion of conflicting policies are responsibility of the control
plane [38], and are thus orthogonal to this paper.

USENIX Association 20th USENIX Conference on File and Storage Technologies 417

6.2 Integrating PAIO in User-level Layers
Porting I/O layers to use PAIO stages can require a few steps.
Using PAIO with context propagation. To integrate a stage
within a layer, the system designer typically needs to:
1. Create the stage in the targeted layer, using paio_init.
2. Instrument the critical data path, where the layer-level in-

formation is accessible, and propagate it to the stage upon
the Context object creation. This might entail creating
additional data structures.

3. Create the Context object that will be submitted, alongside
the request, to the stage. It can include the workflow id,
request type and size, and the propagated information.

4. Add an enforce call to the I/O operations that need to be
enforced at the stage before being submitted to the next
layer. For example, to enforce the POSIX read operations
of a given layer, all read calls need to be first routed to
PAIO before being submitted to the file system.

5. Verify if the request was successfully enforced by inspect-
ing the Result object, returned from enforce, and resume
the execution path.

Using PAIO transparently. When context propagation is not
required, PAIO stages can be used transparently between I/O
layers, such as applications and file systems. PAIO exposes
layer-oriented interfaces (e.g., POSIX) and uses LD_PRELOAD

to replace the original interface calls at the top layer (e.g., read
and write calls invoked by applications) for ones that are first
submitted to PAIO before being submitted to the bottom layer
(e.g., file system) [7]. Each supported call defines the logic
to create the Context object, submits the request to the stage,
verifies the Result, and invokes the original I/O call. This
enables layers to use PAIO without changing any line of code.

6.3 Building Enforcement Objects
PAIO exposes to system designers a simple API to build
enforcement objects, as depicted in Table 2.
• obj_init. Create an enforcement object with initial state
s, which includes its type and initial configuration.

• obj_config. Provides the tuning knobs to update the en-
forcement object’s internal settings with a new state s. This
enables the control plane to dynamically adapt it to work-
load variations and new policies.

• obj_enf. Implements the actual I/O logic to be applied
over requests. It returns a Result that contains the updated
version of the request (r), after applying its logic. It also re-
ceives a Context object (ctx) that is used to employ different
actions over the I/O request.
By default, PAIO preserves the operation logic of the tar-

geted system (e.g., ordering, error handling), as both enforce-
ment objects and operations submitted to PAIO follow a syn-
chronous model. While developing asynchronous enforce-
ment objects is feasible, one needs to ensure that both correct-
ness and fault tolerance guarantees are preserved.

7 Implementation

We have implemented PAIO prototype with 9K lines of C++
code. It targets layers at the user-level, enabling the construc-
tion of new stage implementations and simple integration,
requiring none or minor code changes.

Enforcement objects. We implemented two enforcement ob-
jects. Noop implements a pass-through mechanism that copies
the request’s content to the Result object, without additional
data processing. Dynamic rate limiter (DRL) implements a
token-bucket to control the rate and burstiness of I/O work-
flows [17]. The bucket is configured with a maximum token
capacity (size) and period to replenish the bucket (refill pe-
riod). The rate at which the bucket serves requests is given in
tokens/s. On obj_init the bucket is created with an initial size
and refill period. On obj_config, a rate(r) routine changes
the size according to a function between r and refill period.
For each request, obj_enf verifies the context’s size classifier
and computes the number of tokens to be consumed. If not
enough tokens are available, the request waits for the bucket
to be refilled. To demonstrate the portability and maintainabil-
ity of PAIO’s I/O mechanisms, we apply the DRL object over
two use cases composed of different layers and objectives.

I/O cost. We consider a constant cost for requests e.g., each
byte of a read or write request represents a token. Although
the cost depends on several factors (e.g., workload, type, cache
hits), we continuously calibrate the token-bucket so its rate
converges to the policies’ goal. Our experiments show that
this approach works well in our scenarios, as the bucket’s
rate converges within few interactions with the control plane.
Nevertheless, determining the I/O cost is complementary to
our work [24,50]. Combining PAIO with these could be useful
under scenarios where policies are sensitive to the I/O cost.

Statistics, communication, and differentiation. PAIO im-
plements per-workflow statistic counters at channels to record
the bandwidth of intercepted requests, number of operations,
and mean throughput between collection periods. Commu-
nication between the control plane and stages is established
through UNIX Domain Sockets. To create unique identifiers
that map requests to channels and enforcement objects, we
used a computationally cheap hashing scheme [14] (i.e., Mur-
murHash3) that hashes classifiers into a fixed-size token.

Context propagation. To propagate information from layers,
we implemented a shared map, indexed by the workflow iden-
tifier (e.g., thread-id), that stores the context of the requests
being submitted, which is similar to those used in [36, 37].

Transparently intercepting I/O calls. PAIO uses LD_PRELO-

AD to intercept POSIX calls and route them either to the stage
or to the kernel. It supports read and write calls, including
different variations (e.g., pread, pwrite64). We found that sup-
porting this set of calls is sufficient to enforce data-oriented
policies, as presented in §8.2. We defer the support of other
calls and interfaces (e.g., KVS, object store) to future work.

418 20th USENIX Conference on File and Storage Technologies USENIX Association

Control plane. We built a simple but fully-functional con-
trol plane with 3.6K lines of C++ code that enforces policies
for the two use cases of this paper (§8). Policies were im-
plemented as control algorithms. To calibrate enforcement
objects, besides stage statistics, it collects I/O metrics gen-
erated by the targeted layer from the /proc file system [44].
Specifically, it inspects the read_bytes and write_bytes I/O
counters, which represent the number of bytes read/written
from/to the block layer, and compares them with the stage
statistics to converge to the targeted performance goal.

8 Use Cases and Control Algorithms

We now present two use cases that showcase the applicability
of PAIO for different applications and performance goals.

8.1 Tail Latency Control in Key-Value Stores

LSM KVSs [34] (e.g., RocksDB) use foreground flows to at-
tend client requests, which are enqueued and served in FIFO
order. Background flows serve internal operations, namely
flushes and compactions. Flushes are sequentially written to
the first level of the tree (L0) and only proceed when there is
enough space. Compactions are held in a FIFO queue, waiting
to be executed by a dedicated thread pool. Except for low level
compactions (L0→L1), these can be made in parallel. A com-
mon problem of these however, is the interference between
I/O workflows, generating latency spikes for client requests.
Latency spikes occur when flushes cannot proceed because
L0→L1 compactions and flushes are slow or on hold [16].
SILK. SILK [16], a RocksDB-based KVS, prevents this
through an I/O scheduler that: allocates bandwidth for internal
operations when client load is low; prioritizes flushes and low
level compactions, as they impact client latency; and preempts
high level compactions with low level ones. It employs these
techniques through the following control algorithm. As these
KVSs are embedded, the KVS I/O bandwidth is bounded
to a given rate (KVSB). It monitors clients’ bandwidth (Fg),
and allocates leftover bandwidth (leftB) to internal operations
(IB), given by IB = KVSB−Fg. To enforce rate IB, SILK uses
RocksDB’s rate limiters [4]. Flushes and L0→L1 compactions
have high priority and are provisioned with minimum I/O
bandwidth (minB). High level compactions have low priority
and can be paused at any time. Because all compactions share
the same thread pool, it is possible that, at some point, all
threads are handling high level compactions. As such, SILK
preempts one of them to execute low level compactions.

Applying these optimizations however, required reorganiz-
ing RocksDB’s internal operation flow, changing core mod-
ules made of thousands of LoC including background op-
eration handlers, internal queuing logic, and thread pools
allocated for internal work [15]. Further, porting these opti-
mizations to other KVS that would equally benefit from them,

Algorithm 1 Tail Latency Control Algorithm
Initialize: KVSB = 200; minB = 10
1: {Fg,Fl,L0,LN}← collect ()
2: leftB←KVSB−Fg
3: leftB← max {leftB | minB}
4: if Fl > 0∧L0 > 0 then
5: {BFl , BL0 , BLN }← {leftB/2, leftB/2, minB}
6: else if Fl > 0∧L0 = 0 then
7: {BFl , BL0 , BLN }← {leftB, minB, minB}
8: else if Fl = 0∧L0 > 0 then
9: {BFl , BL0 , BLN }← { minB, leftB, minB}

10: else
11: {BFl , BL0 , BLN }← { minB, minB, leftB}
12: enf_rule ({BFl , BL0 , BLN })
13: sleep (loop_interval)

such as LevelDB [21] and PebblesDB [47], requires deep
system knowledge and substantial re-implementation efforts.

PAIO. Rather than modifying the RocksDB engine, we found
that several of these optimizations could be achieved by or-
chestrating the I/O workflows. Thus, we applied SILK’s de-
sign principles as follows: a PAIO data plane stage provides
the I/O mechanisms for prioritizing and rate limiting back-
ground flows, while the control plane re-implements the I/O
scheduling algorithm to orchestrate the stage.

The stage intercepts all RocksDB workflows. We consider
each RocksDB thread that interacts with the file system as a
workflow. Channel differentiation is made using the workflow
id. We instrumented RocksDB to propagate the context at
which a given operation is created, namely flush (flush) or
compaction (e.g., compaction_L0_L1). Foreground flows are
monitored for collecting clients’ bandwidth (Fg). Background
flows are routed to channels made of DRL objects. Flushes flow
through a dedicated channel. As compactions with different
priorities can flow through the same channel, each channel
contains two DRL objects configured at different rates. The en-
forcement object differentiation is made through the request
context classifier, and requests are enforced with the optimiza-
tion described in §5. PAIO also collects the bandwidth of
flushes (Fl), and low (L0) and high level compactions (LN).

The control plane implements the control portion of SILK’s
scheduling algorithm (Alg. 1). It uses a feedback control
loop that performs the following steps. First, it collects statis-
tics from the stage (1) and computes leftover disk bandwidth
(leftB) to assign to internal operations (2). To ensure that
background operations keep flowing, it defines a minimum
bandwidth threshold (3), and distributes leftB according to
workflow priorities (4-11). If high priority tasks are executing
it assigns them an equal share of leftB, while ensuring that
high level compactions keep flowing (minB), preventing low
level ones from being blocked in the queue (5). If a single high
priority task is being executed, leftB is allocated to it and minB
to others (6-9). If no high priority task is executing, it reserves
leftB to low priority ones (11). It then generates and submits
enf_rules to adjust the rate of each enforcement object (12).
For low priority compactions, it splits BLN between all DRL

USENIX Association 20th USENIX Conference on File and Storage Technologies 419

Table 3: Lines of code added to RocksDB and TensorFlow.

Lines added
RocksDB TensorFlow (LD_PRELOAD)

Targeted code base size ≈335K [5] ≈2.3M [6]
Initialize PAIO stage 10 —
Context propagation 47 —

Create Context object 7 —
Instrument I/O calls 17 —
Verify Result object 4 —

Total 85 0

objects that handle these. Since high priority compactions are
executed sequentially [9, 16], it assigns BL0 to the respective
objects. Rate BFl is assigned to those responsible for flushes.
Integration with RocksDB. Integrating PAIO in RocksDB
only required adding 85 LoC (Table 3). Specifically:
1. Initialize PAIO stage and create additional structures to

identify the task that each workflow is executing (10 LoC).
2. Instrument RocksDB’s internal thread pools for identify-

ing the workflows that run flush and compaction jobs (17
LoC). To differentiate high priority compactions from low
priority ones, we instrumented the code where compaction
jobs are created. For each job, we verify its level and up-
date the structure with the task that the workflow will be
executing (e.g., compaction_L0_L1) (30 LoC).

3. Create a Context object with workflow id, request type,
context, and size I/O classifiers (7 LoC).

4. Submit all read and write calls to the stage (17 LoC).
5. Verify the Result of the enforcement (4 LoC).

8.2 Per-Application Bandwidth Control

The ABCI supercomputer is designed upon the convergence
between AI and HPC workloads. One of the most used AI
frameworks on it is TensorFlow [11]. To execute TensorFlow
jobs users can reserve a full node or a fraction of it (i.e., jobs
execute concurrently). Nodes are partitioned into resource-
isolated instances through Linux’s cgroups [39]. Each in-
stance has exclusive access to CPU cores, memory space, a
GPU, and local storage quota. However, the local disk band-
width is still shared, and because each instance is agnostic of
others, jobs compete for bandwidth leading to I/O interference
and performance variation. Even if the block I/O scheduler is
fair, all instances are provisioned with the same service level,
preventing the assignment of different priorities.

Using cgroups’s block I/O controller (blkio) allows static
rate limiting read and write operations of each instance [2].
However, under ABCI, once the rate is set it cannot be dynam-
ically changed at execution time, as it requires stopping the
jobs, adjust the rate of all groups, and restart the jobs, being
prohibitively expensive in terms of overall execution time.
This creates a second problem where if no other job is execut-
ing in the node, the instance cannot use leftover bandwidth.
PAIO. To address this, we use a PAIO stage that implements
the mechanisms to dynamically rate limit workflows at each

Algorithm 2 Max-min Fair Share Control Algorithm
Initialize: MaxB = 1GiB; Active > 0; demandi > 0
1: {I1, I2, I3, I4}← collect ()
2: leftB←MaxB
3: for i = 0 in [0, Active−1] do
4: if demandi ≤ le f tB

Active−i then
5: ratei← demandi
6: else
7: ratei← le f tB

Active−i

8: leftB← leftB - ratei

9: for i = 0 in [0, Active−1] do
10: ratei← le f tB

Active

11: enf_rule ({rate1, I1},{rate2, I2},{rate3, I3},{rate4, I4})
12: sleep (loop_interval)

instance, while the control plane implements a proportional
sharing algorithm to ensure all instances meet their policies.

Our use case focuses on the model training phase, where
each instance runs a TensorFlow job that uses a single work-
flow to read dataset files from the file system. TensorFlow’s
read requests are intercepted and routed to the stage, which
contains a channel with a DRL enforcement object. Requests
are enforced with the optimization described in §5.

The control plane implements a max-min fair share algo-
rithm to ensure per-application bandwidth guarantees (Alg. 2),
which is typically used for resource fairness policies [35, 54].
The overall disk bandwidth available (MaxB) and bandwidth
demand of each application (demand) are defined a priori by
the system administrator or the mechanism responsible for
managing resources of different job instances [63]. The algo-
rithm uses a feedback control loop that performs the following
steps. First, the control plane collects statistics from each ac-
tive instance’s stage, given by Ii (1), as well as the bandwidth
generated by each TensorFlow job (collected at /proc). Then,
it computes the rate of each active instance (3-10). If an in-
stance’s demand is less than its fair share, the control plane
assigns its demand (4-5), assigning the fair share otherwise
(7). It then distributes leftover bandwidth (leftB) across in-
stances (9-10). Then, it calibrates the rate of each instance
in a function of Ii and ratei, generating the enf_rules to be
submitted to each stage (11). Finally, the control plane sleeps
for loop_interval before beginning a new control cycle (12).
Integration with TensorFlow. Integrating TensorFlow with
PAIO did not required any code changes (Table 3). We used
LD_PRELOAD to intercept, and route to PAIO, TensorFlow’s read
and write calls. All supported calls implement the logic nec-
essary for the request to be enforced, including the creation of
the Context object using the request type and size classifiers;
stage enforcement; verification of the enforcement Result; and
its submission to the original execution path (file system).

9 Evaluation
Our evaluation seeks to demonstrate the performance of PAIO,
and its ability and feasibility of enforcing policies over differ-
ent scenarios. The results show that:

420 20th USENIX Conference on File and Storage Technologies USENIX Association

• Its performance scales with the number of channels, achiev-
ing high throughput and low latency (§9.1).

• It can be used to enforce policies over different I/O layers
with distinct requirements (§9.2 and §9.3).

• By propagating application-level information to the data
plane stage, PAIO outperforms RocksDB by at most 4× in
tail latency, while enabling similar control and performance
as system-specific optimizations (SILK) (§9.2).

• When internal system knowledge is not required, PAIO can
enforce policies without application changes. By having
global visibility, it provisions per-application bandwidth
guarantees at all times, and improves overall execution time
when compared to a static rate limiting approach (§9.3).

Experimental setting. Experiments were conducted under
two hardware configurations. A: a compute node of the ABCI
supercomputer with two 20-core Intel Xeon processors (80
cores), 4 NVidia Tesla V100 GPUs, 384GiB of RAM, and a
1.6TiB Intel SSD DC P4600, running CentOS 7.5 with Linux
kernel 3.10 and the xfs file system. B: a server with two
18-core Intel Xeon processors (72 cores), 192GiB of RAM,
a 1.6TiB Dell Express Flash PM1725b SSD (NVMe) and a
480GiB Intel D3-s4610 SATA SSD, running Ubuntu Server
20.04 LTS with kernel 5.8.9 and the ext4 file system.

9.1 PAIO Performance and Scalability
We developed a benchmark that simulates an application that
submits requests to a PAIO stage. This benchmark aims to
demonstrate the maximum performance achievable with PAIO
by stress-testing it in a loop-back manner. It generates and
submits multi-threaded requests in a closed loop through the
Instance’s enforce call, under a varying number of clients
(e.g., workflows) and request sizes. Request size and number
of client threads range between 0 – 128KiB and 1 – 128,
respectively. Each client thread submits 100M requests. A
PAIO stage is configured with varying number of channels
(matching the number of client threads), each containing a
Noop enforcement object that copies the request’s buffer to
the result object. All reported results are the mean of at least
ten runs and standard deviation is kept below 5%.
IOPS and bandwidth. Fig. 4 depicts the cumulative IOPS
ratio with respect to a single channel. 0B represents a context-
only request, as described in §5. Results marked with ∗ and +
were conducted under configurations A and B, respectively.

For configuration A, under a 0B∗ request size, a single PAIO
channel achieves a mean throughput of 3.05 MOps/s and a
327 ns latency. Since the workload is CPU-bound, the per-
formance does not scale linearly, as client threads compete
for processing time. Under 128 channels, it achieves a cu-
mulative throughput of 97.4 MOps/s, a 31× performance
increase. As the request size increases so does the total bytes
processed by PAIO. When configured with 128 channels, it
processes 128KiB∗ requests at 384 GiB/s. For a single chan-
nel, PAIO processes requests at 2.1 GiB/s and 11.7 GiB/s

IO
PS

 R
at

io
 w

rto
 1

 C
ha

nn
el

3.
05

M
O

ps
/s

3.
43

M
O

ps
/s

2.
06

M
O

ps
/s

2.
67

M
O

ps
/s

1.
54

M
O

ps
/s

1.
97

M
O

ps
/s

60
1.
6K

O
ps

/s

80
0.
4K

O
ps

/s

18
4.
3K

O
ps

/s

23
7.
8K

O
ps

/s

95
.6

K
O

ps
/s

12
0.
3K

O
ps

/s

0
5

10
15
20
25
30
35

0 B* 0 B+ 1 KiB* 1 KiB+

4 KiB* 4 KiB+ 16 KiB* 16 KiB+

64 KiB* 64 KiB+ 128 KiB* 128 KiB+

1 channel
2 channels

4 channels
8 channels

16 channels
32 channels

64 channels
128 channels

0
5

10
15
20
25
30
35

0 B* 0 B+ 1 KiB* 1 KiB+

4 KiB* 4 KiB+ 16 KiB* 16 KiB+

64 KiB* 64 KiB+ 128 KiB* 128 KiB+
0
5

10
15
20
25
30
35

0 B* 0 B+ 1 KiB* 1 KiB+

4 KiB* 4 KiB+ 16 KiB* 16 KiB+

64 KiB* 64 KiB+ 128 KiB* 128 KiB+
0
5

10
15
20
25
30
35

0 B* 0 B+ 1 KiB* 1 KiB+

4 KiB* 4 KiB+ 16 KiB* 16 KiB+

64 KiB* 64 KiB+ 128 KiB* 128 KiB+

0
5

10
15
20
25
30
35

0 B* 0 B+ 1 KiB* 1 KiB+

4 KiB* 4 KiB+ 16 KiB* 16 KiB+

64 KiB* 64 KiB+ 128 KiB* 128 KiB+

0
5

10
15
20
25
30
35

0 B* 0 B+ 1 KiB* 1 KiB+

4 KiB* 4 KiB+ 16 KiB* 16 KiB+

64 KiB* 64 KiB+ 128 KiB* 128 KiB+

Figure 4: Cumulative IOPS of PAIO under varying number of chan-
nels (1 – 128) and request sizes (0 – 128 KiB). Absolute IOPS value
is shown above the 1 channel bar.

for 1KiB∗ and 128KiB∗ request sizes. For configuration B,
PAIO achieves higher throughput results as it operates under a
later kernel version. Since the machine is configured with 72
cores, PAIO’s performance peaks at 64 client threads. Under
a 0B+ request size, PAIO achieves 3.43 MOps/s (1 channel)
and 102.7 MOps/s (64 channels), representing a 30× perfor-
mance increase. When configured with 64 channels, it is able
to process 128KiB+-sized requests at 489 GiB/s. For a single
channel, PAIO processes requests at 2.5 GiB/s and 14.7 GiB/s
for 1KiB∗ and 128KiB∗ request sizes, respectively.
Profiling. We measured the execution time of each PAIO
operation that appears in the main execution path. Depending
on the hardware configuration, Context object creation takes
between 17 – 19 ns, while the channel and enforcement object
selection take 85 – 89 ns to complete (each). The duration of
obj_enf ranges between 20 ns and 8.45 µs when configured
with 0B and 128KiB request sizes.
Summary. Results show that PAIO has low overhead, as it
is provided as a user-space library, which does not require
costly context-switching operations. We expect that the main
source of overhead will always be dependent on the type of
enforcement object applied over requests. For the enforcement
object used in the use cases of this paper (§9.2 – §9.3), we
have not observed significant performance degradation.

9.2 Tail Latency Control in Key-Value Stores
We now demonstrate how PAIO achieves tail latency control
under several workloads. We compare the performance of
RocksDB [5]; Auto-tuned, a version of RocksDB with auto-
tuned rate limiting of background operations enabled [28];
SILK [16]; and PAIO, i.e., a PAIO-enabled RocksDB.
System configuration. Experiments were conducted under
hardware configuration B using the available NVMe device
(unless stated otherwise). All systems are tuned as follows.
The memtable-size is set to 128MiB. We use 8 threads for
client operations and 8 background threads for flush (1) and

USENIX Association 20th USENIX Conference on File and Storage Technologies 421

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) Auto-tuned

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

Op
s/s

)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
ten

cy
(m

s)

Time (s)
Figure 5: Mixture workload. Throughput and 99th percentile latency results for RocksDB, Auto-tuned, SILK, and PAIO.

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) Auto-tuned

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

Op
s/s

)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
ten

cy
(m

s)

Time (s)
Figure 6: Read-heavy workload. Throughput and 99th percentile latency results for RocksDB, Auto-tuned, SILK, and PAIO.

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) Auto-tuned

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

Op
s/s

)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
ten

cy
(m

s)

Time (s)
Figure 7: Write-heavy workload. Throughput and 99th percentile latency results for RocksDB, Auto-tuned, SILK, and PAIO.

compactions (7). The minimum bandwidth threshold for in-
ternal operations is set to 10MiB/s. To simplify results com-
pression and commit logging are turned off. All experiments
are conducted using the db_bench benchmark [3]. As used in
the SILK testbed [16], we limit memory usage to 1GiB and
I/O bandwidth to 200MiB/s (unless stated otherwise).
Workloads. We focus on workloads made of bursty clients, to
better simulate existing services in production [16,18]. Client
requests are issued in a closed loop through a combination of
peaks and valleys. An initial valley of 300 seconds submits
operations at 5kops/s, and is used for executing the KVS
internal backlog. Peaks are issued at a rate of 20kops/s for
100 seconds, followed by 10 seconds valleys at 5kops/s. All
datastores were preloaded with 100M key-value pairs, using
a uniform key-distribution, 8B keys and 1024B values.

We use three workloads with different read:write ratios:
mixture (50:50), read-heavy (90:10), and write-heavy (10:90).
Mixture represents a commonly used YCSB workload (work-
load A) and provides a similar ratio as Nutanix production
workloads [16]. Read-heavy provides an operation ratio simi-

lar to those reported at Facebook [18]. To present a compre-
hensive testbed, we include a write-heavy workload. For each
system, workloads were executed three times over 1-hour with
uniform key distribution. For figure clarity, we present the first
20 minutes of a single run. Similar performance curves were
observed for the rest of the execution. Fig. 5–9 depict through-
put and 99th percentile latency of all systems and workloads.
Theoretical client load is presented as a red dashed line. Mean
throughput is shown as an horizontal dashed line.

Mixture workload (Fig. 5). Due to accumulated backlog of
the loading phase, the throughput achieved in all systems
does not match the theoretical client load. RocksDB presents
high tail latency spikes due to constant flushes and low level
compactions. Auto-tuned presents less latency spikes but de-
grades overall throughput. This is due to the rate limiter be-
ing agnostic of background tasks’ priority, and because it
increases its rate when there is more backlog, contending for
disk bandwidth. SILK achieves low tail latency but suffers
periodic drops in throughput due to accumulated backlog.
Compared to RocksDB (11.9 kops/s), PAIO provides simi-

422 20th USENIX Conference on File and Storage Technologies USENIX Association

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) RocksDB

25
50
75
100

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) SILK

25
50
75
100

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

Op
s/s

)

Time (s)

PAIO

25
50
75

100

0 300 600 900 1200

La
ten

cy
(m

s)

Time (s)
Figure 8: Mixture workload without rate limiting (SATA SSD). Throughput and 99th percentile latency results for RocksDB, SILK, and PAIO.

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

Op
s/s

)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
ten

cy
(m

s)

Time (s)
Figure 9: Mixture workload without rate limiting (NVMe). Throughput and 99th percentile latency results for RocksDB, SILK, and PAIO.

lar mean throughput (12.4 kops/s). As for tail latency, while
RocksDB experiences peaks that range between 3–20 ms,
PAIO and SILK observe a 4× decrease in absolute tail latency,
with values ranging between 2–6 ms.

Read-heavy workload (Fig. 6). Throughput-wise all systems
perform identically. At different periods, all systems demon-
strate a temporary throughput degradation due to accumulated
backlog. As for tail latency, the analysis is twofold. RocksDB
and Auto-tuned present high tail latency up to the 400 s mark.
After that mark, RocksDB does not have more pending back-
log and achieves sustained tail latency (1–3 ms), while on
Auto-tuned, some compactions are still being performed due
to rate limiting, increasing latency by 1–2 ms. SILK and PAIO
have similar latency curves. During the initial valley both
systems significantly improve tail latency when compared
to RocksDB. After the 400 s mark, SILK pauses high level
compactions and achieves a tail latency between 1–2 ms. By
preempting high level compactions and serving low level ones
through the same thread pool as flushes, it ensures that high
priority tasks are rarely stalled. SILK achieves this by mod-
ifying the RocksDB’s queuing mechanism. In PAIO, while
sustained, its tail latency is 1 ms higher than SILK’s in the
same observation period. Since PAIO does not modify the
RocksDB engine, it cannot preempt compactions (§8.1).

Write-heavy workload (Fig. 7). Write-intensive workloads
generate a large backlog of background tasks, leading Rocks-
DB to experience high latency spikes. Auto-tuned limits all
background writes, reducing latency spikes but still exceeding
the 5 ms mark over several periods. SILK pauses high level
compactions and only serves high priority tasks, improving
mean throughput and keeping latency spikes below 5 ms. In
PAIO, since flushes occur more frequently, the control plane
slows down high level compactions more aggressively, which
leads to low level ones to be temporary halted at the com-
paction queue, waiting to be executed. Even though mean

throughput is decreased, PAIO significantly reduces tail la-
tency, never exceeding 6 ms. The throughput difference be-
tween PAIO and SILK is justified by the latter preempting high
level compactions, as described in the read-heavy workload.

Mixture workload without rate limiting (Fig. 8–9). We
conducted an additional set of experiments to assess the im-
pact of the tail latency control algorithm under a scenario
where the KVS has access to the full storage device band-
width. We compared the performance of RocksDB, SILK, and
PAIO under both SSD and NVMe devices, without rate lim-
iting, using the mixture workload. The KVSB parameter was
set with a value closer to the device’s limit. For Auto-tuned,
we report similar conclusions to those presented in Fig. 5.

Fig. 8 depicts the results under the SSD device. Due to
accumulated backlog all systems experience poor through-
put performance, averaging at 7.46 kops/s (RocksDB), 7.52
kops/s (SILK), and 8.88 kops/s (PAIO). During the loading
phase, and until finishing the accumulated backlog (0–400 s),
RocksDB experiences long periods of high tail latency, peak-
ing at 111 ms. After that, it observes latency spikes due to
constant flushes and low level compactions, with values rang-
ing between 15–60 ms. SILK and PAIO present a more sus-
tained latency performance, never exceeding the 25 ms mark
throughout the overall observation period. Specifically, while
RocksDB experienced a variability of 21 ms, SILK and PAIO
achieved 4.7 ms and 5.8 ms, respectively.2 Throughput-wise,
both systems observe periodic drops due to accumulated back-
log. However, PAIO is able to recover faster than SILK. Be-
cause it cannot preempt compactions, PAIO reserves more
bandwidth (than SILK) to low priority compactions, ensuring
that high priority tasks do not wait to be executed. As such,
PAIO follows a proactive approach for assigning bandwidth
to compactions, while SILK follows a reactive approach.

2The variability results correspond to the average of the absolute devia-
tions of data points (i.e., each tail latency measurement) from their mean.

USENIX Association 20th USENIX Conference on File and Storage Technologies 423

Th
ro

ug
hp

ut
 (M

iB
/s

)

550

250

500

750

1000

0 10 20 30 40 50

421
MiB/s

385
MiB/s

394
MiB/s

341
MiB/s

342
MiB/s

329
MiB/s

I1:256MiB/s

I2:259MiB/s

I3:257MiB/s

I4:248MiB/s

322
MiB/s

330
MiB/s

320
MiB/s

369
MiB/s

365
MiB/s

425
MiB/s

Baseline

1
2

3 4 5 6

7

950

250

500

750

1000

0 10 20 30 40 50 60
149
MiB/s

150
MiB/s

198
MB/s

150
MiB/s

200
MiB/s

297
MiB/s

I1:149MiB/s
I2:199MiB/s

I3:298MiB/s

I4:342MiB/s

149MiB/s

199MiB/s

296MiB/s

150MiB/s

200MiB/s
149
MiB/s

Blkio

1

2
3 4 5

6

7

T
hr

ou
gh

pu
t (

M
iB

/s
)

Time (minutes)
0

250

500

750

1000

0 10 20 30 40 50

423MiB/s 385MiB/s

384MiB/s

245MiB/s

296MiB/s

349MiB/s

I1:147MiB/s
I2:198MiB/s

I3:299MiB/s

I4:329MiB/s

242
MiB/s

288
MiB/s

354
MiB/s

380
MiB/s

370
MiB/s

416MiB/s

PAIO

1

2
3

4
5

6

7

Figure 10: Per-application bandwidth under shared storage for Baseline, Blkio, and PAIO setups. Instances I1 (), I2 (), I3 (), and
I4 () are assigned with minimum bandwidth of 150, 200, 300, and 350 MiB/s, and execute 6, 5, 5, and 4 training epochs, respectively.

Fig. 9 depicts the results under the NVMe device. All
systems experienced higher throughput performance, aver-
aging at 14.39 kops/s (RocksDB), 10.27 kops/s (SILK), and
13.11 kops/s (PAIO). RocksDB follows a similar performance
curve as the theoretical client load. The reason behind this is
twofold. First, it completes all accumulated backlog during
the initial valley (at the cost of high tail latency), which posi-
tively reflects in the remainder execution (i.e, no significant
performance loss is observed). Second, since NVMe devices
have higher throughput performance and parallelism than
SSD devices (Fig. 8), RocksDB achieves a more sustained
performance. After the initial valley, RocksDB observes la-
tency spikes that range between 7–15 ms due to frequent
flushes and low level compactions. SILK and PAIO follow
similar tail latency curves, never exceeding the 6 ms mark. In
detail, throughout the overall observation period, RocksDB
observed a variability of 2.5 ms, while SILK and PAIO only
observed a variability of 0.8 ms. Similarly to previous results,
both system experience periodic throughput drops.
Summary. We demonstrate that through minor code changes,
PAIO outperforms RocksDB by at most 4× in tail latency
and enables similar control and performance as SILK, which
required profound refactoring to the original code base.

9.3 Per-Application Bandwidth Control

We now demonstrate how PAIO ensures per-application band-
width guarantees under a shared storage scenario. Our setup
was driven by the requirements of the ABCI supercomputer.
System configuration. Experiments ran under hardware con-
figuration A using TensorFlow 2.1.0 with the LeNet [30]
training model, configured with a batch size of 64 TFRecords.
We used the ImageNet dataset (≈150GiB) [48]. Each instance
runs with a dedicated GPU and dataset, and its memory is lim-
ited to 32GiB. Overall disk bandwidth is limited to 1GiB/s. At
all times, a node executes at most four instances with equal re-
source shares in terms of CPU, GPU, and RAM. Each instance
executes a TensorFlow job, is assigned with a bandwidth pol-
icy, and executes a given number of training epochs. Namely,

instances 1 to 4 are assigned with minimum bandwidth guar-
antees of 150, 200, 300, and 350 MiB/s, and execute 6, 5, 5,
and 4 training epochs, respectively.

Setups. Experiments were conducted under three setups.
Baseline represents the current setup supported at the ABCI
supercomputer; all instances execute without bandwidth guar-
antees. Blkio enforces bandwidth limits using blkio [2]. In
PAIO, each instance executes with a PAIO stage that enforces
the specified bandwidth goals dynamically. Fig. 10 depicts,
for each setup, the I/O bandwidth of all instances at 1-second
intervals. Experiments include seven phases, each marking
when an instance starts or completes its execution.

Baseline. Experiments were executed over 52 minutes. At
À, I1 reads at 421 MiB/s. Whenever a new instance is added,
the I/O bandwidth is shared evenly (Á). At Â, the aggregated
instance throughput matches the disk limit. At Ã, instance per-
formance converges to ≈256 MiB/s, leading to all instances
experiencing the same service level. However, I3 and I4 can-
not meet their goal, since I1 and I2 have more than their fair
share. After 46 minutes of execution (Ä), I3 terminates, and
leftover bandwidth is shared with the remainder. Again, I4
cannot achieve its targeted goal. At Å and Æ, active instances
have access to leftover bandwidth and finish their execution.
Summary: I3 and I4 were unable to achieve their bandwidth
guarantees, missing their objectives during 31 and 34 minutes.

Blkio. Experiments were executed over 95 minutes. From À
to Æ, whenever a new instance is added, it is provisioned with
its exact bandwidth limit. Because the rate of each instance
is set using blkio, instances cannot use leftover bandwidth to
speed up their execution. For example, while on Baseline I1
executes under the 50-minutes mark, it takes 95 minutes to
complete its execution in Blkio. To overcome this, a possible
solution would require to stop and checkpoint the instance’s
execution, reconfigure blkio with a new rate, and resume from
the latest checkpoint. However, doing this process every time
a new instance joins or leaves the compute node would signif-
icantly delay the execution time of all running instances.
Summary: All instances achieve their bandwidth guarantees

424 20th USENIX Conference on File and Storage Technologies USENIX Association

but cannot be dynamically provisioned with available disk
bandwidth, leading to longer periods of execution.
PAIO. Experiments were executed over 56 minutes. At À and
Á, instances are assigned with their proportional share, as
the control plane first meets each instance demands and then
distributes leftover bandwidth proportionally. At Â, contrary
to Baseline, the control plane bounds the bandwidth of I1
and I2 to a mean throughput of 245 MiB/s and 296 MiB/s,
respectively. At Ã, instances are set with their bandwidth limit.
During this phase, PAIO provides the same properties as blkio.
From Ä to Æ, as instances end their execution, active ones
are provisioned as in À to Â.
Summary: We show that PAIO can enforce per-application
bandwidth guarantees without any code changes to applica-
tions. Contrary to Baseline, PAIO ensures that policies are
met at all times, and whenever leftover bandwidth is available,
PAIO shares it across active instances. Compared to Blkio,
PAIO finishes 39, 15, and 3 minutes faster for I1, I2, and I3.

10 Related Work

SDS systems. PAIO builds on a large body of work on SDS
systems. IOFlow [54], sRoute [52], and PSLO [31] target
the virtualization layer (i.e., hypervisor, storage and network
drivers) to enforce QoS policies. PriorityMeister [65] en-
forces rate limiting services at the Network File System. Mes-
nier et al. [41] employ caching optimizations at the block
layer. Pisces [51] and Libra [50] enforce bandwidth guaran-
tees in multi-tenant KVS. Malacology [49] improves the pro-
grammability of Ceph to build custom applications on top of
it. Retro [35] and Cake [58] implement resource management
services at the Hadoop stack. SafeFS [45] stacks FUSE-based
file systems on top of each other, each providing a different
service. Crystal [22] extends OpenStack Swift to implement
custom services to be enforced over object requests.

All systems are targeted for specific I/O layers, as their
design is tightly coupled to and driven by the architecture
and specificities of the software stacks they are applied to.
In contrast, PAIO is disaggregated from a specific software
stack, enabling developers to build custom-made data plane
stages applicable over different user-level layers, while requir-
ing none to minor code changes — we demonstrate this by
integrating PAIO over two different I/O layers (§8). Previous
works are also unable to enforce the policies demonstrated
in §8.1, as they do not provide context propagation [50, 51],
inhibiting differentiating requests at a finer granularity (i.e.,
foreground vs high-priority vs low-priority background tasks);
or actuate at the kernel-level [41, 54], where the context is
unreachable without significantly changing legacy APIs. Fur-
ther, these are also unfit to achieve the policies demonstrated
in §8.2, as solutions like [31, 52, 54] cannot be used under
scenarios that require bare-metal access to resources, such as
HPC infrastructures and bare-metal cloud servers.
Context propagation. Some works use context propagation

techniques to tag data across kernel layers. Mesnier et al. [41]
classifies and tags requests with classes to be differentiated
at the block layer. IOFlow [54] tags requests to differentiate
tenants that share the same hypervisor. Split-level schedul-
ing [62] identifies the processes that caused a given I/O oper-
ation throughout the VFS, page cache, and block layer.

PAIO acts at the user-level and enables the propagation of
additional information from the targeted I/O layer to the stage
(e.g., propagate the context at which a given request was cre-
ated, as in §8.1), allowing more fine-grained differentiation
and control over requests. Enabling the intended granular-
ity by PAIO at kernel-level approaches would require break-
ing standard user-to-kernel and kernel-internal interfaces, re-
ducing portability and compatibility [13]. Our contributions
are also applicable under kernel-bypass storage stacks (e.g.,
SPDK, PMDK), which is not the case for previous work.
Storage QoS. Many works ensure QoS SLOs at specific stor-
age layers, including the block layer [2, 25, 33, 40, 57, 64], hy-
pervisor [23,24,26,31,54], and distributed storage [46,58–60].
These works are targeted for a specific I/O layer and stor-
age objective. In contrast, PAIO is more general, providing
a framework for building custom data plane stages applica-
ble over different layers. Also, most of these solutions only
differentiate requests based on their type. PAIO provides dif-
ferentiation at workflow, request type, and request context.
Approaches like [26, 33, 40, 64] follow a decoupled design
that separates the QoS algorithm from the mechanism that
applies it. While complementary to our work, these could be
incorporated into our framework as new enforcement objects.

11 Conclusion
We have presented PAIO, a framework that enables system
designers to build custom-made SDS data plane stages appli-
cable over different I/O layers. PAIO provides differentiated
treatment of requests and allows implementing storage mech-
anisms adaptable to different policies. By combining ideas
from SDS and context propagation, we demonstrated that
PAIO decouples system-specific optimizations to a more pro-
grammable environment, while enabling similar I/O control
and performance, and requiring minor to none code changes.

Acknowledgments
We thank our shepherd, Sudarsun Kannan, and the anony-
mous reviewers for their insightful comments and feedback.
We thank AIST for providing access to computational re-
sources of ABCI. We thank Oana Balmau for discussions
about SILK, and Vitor Enes and Cláudia Brito for their valu-
able input. This work was supported by the Portuguese
Foundation for Science and Technology and the European
Regional Development Fund, through the PhD Fellowship
SFRH/BD/146059/2019 and projects POCI-01-0247-FEDER-
045924 and UTA-EXPL/CA/0075/2019.

USENIX Association 20th USENIX Conference on File and Storage Technologies 425

References

[1] AI Bridging Cloud Infrastructure. https://abci.ai/.

[2] BLKIO: Cgroup’s Block I/O Controller. https:
//www.kernel.org/doc/Documentation/cgroup-
v1/blkio-controller.txt.

[3] facebook/rocksdb: Benchmarking tools (db_bench).
https://github.com/facebook/rocksdb/wiki/
Benchmarking-tools.

[4] facebook/rocksdb: Rate Limiter. https://github.
com/facebook/rocksdb/wiki/Rate-Limiter.

[5] facebook/rocksdb: RocksDB v5.17.2. https://
github.com/facebook/rocksdb/tree/v5.17.2.

[6] google/tensorflow: TensorFlow. https://github.
com/tensorflow/tensorflow/tree/v2.1.0.

[7] ld.so: LD_PRELOAD. https://man7.org/linux/
man-pages/man8/ld.so.8.html.

[8] Persistent Memory Development Kit. https://pmem.
io/pmdk/.

[9] RocksDB: A persistent key-value store for fast storage
environments. https://rocksdb.org/.

[10] Storage Performance Development Kit. https://spdk.
io/.

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Murray, Benoit Steiner, Paul Tucker, Vi-
jay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A System for Large-
Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation,
pages 265–283. USENIX, 2016.

[12] Ian Ackerman and Saurabh Kataria. Home-
page feed multi-task learning using TensorFlow.
https://engineering.linkedin.com/blog/2021/
homepage-feed-multi-task-learning-using-
tensorflow.

[13] Ramnatthan Alagappan, Vijay Chidambaram, Thanu-
malayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Beyond Stor-
age APIs: Provable Semantics for Storage Stacks. In
15th Workshop on Hot Topics in Operating Systems.
USENIX, 2015.

[14] Austin Appleby. appleby/smhasher: SMHasher test suite
for MurmurHash family of hash functions. https://
github.com/aappleby/smhasher, 2010.

[15] Oana Balmau. theoanab/SILK-USENIXATC2019: Pro-
totype of the SILK key-value store. https://github.
com/theoanab/SILK-USENIXATC2019, 2019.

[16] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing Latency Spikes in Log-
Structured Merge Key-Value Stores. In 2019 USENIX
Annual Technical Conference, pages 753–766. USENIX,
2019.

[17] Jean-Yves Le Boudec and Patrick Thiran. Network Cal-
culus: A Theory of Deterministic Queuing Systems for
the Internet, volume 2050. Springer Science & Business
Media, 2001.

[18] Zhichao Cao, Siying Dong, Sagar Vemuri, and David Du.
Characterizing, Modeling, and Benchmarking RocksDB
Key-Value Workloads at Facebook. In 18th USENIX
Conference on File and Storage Technologies, pages
209–223. USENIX, 2020.

[19] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer,
Anshul Jaiswal, Ran Lei, Nikhil Simha, Wei Wang,
Kevin Wilfong, Tim Williamson, and Serhat Yilmaz.
Realtime Data Processing at Facebook. In 2016 In-
ternational Conference on Management of Data, page
1087–1098. ACM, 2016.

[20] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores. In 2020
USENIX Annual Technical Conference, pages 49–63.
USENIX, 2020.

[21] Sanjay Ghemawat and Jeff Dean. google/leveldb: Lev-
elDB, A Fast Key-Value Storage Library. https://
github.com/google/leveldb.

[22] Raúl Gracia-Tinedo, Josep Sampé, Edgar Zamora, Marc
Sánchez-Artigas, Pedro García-López, Yosef Moatti,
and Eran Rom. Crystal: Software-Defined Storage for
Multi-Tenant Object Stores. In 15th USENIX Confer-
ence on File and Storage Technologies, pages 243–256.
USENIX, 2017.

[23] Ajay Gulati, Irfan Ahmad, and Carl A Waldspurger.
PARDA: Proportional Allocation of Resources for Dis-
tributed Storage Access. In 7th USENIX Conference on
File and Storage Technologies, pages 85–98. USENIX,
2009.

[24] Ajay Gulati, Arif Merchant, and Peter Varman. mClock:
Handling Throughput Variability for Hypervisor IO
Scheduling. In 9th USENIX Symposium on Operating
Systems Design and Implementation, pages 437–450.
USENIX, 2010.

426 20th USENIX Conference on File and Storage Technologies USENIX Association

https://abci.ai/
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/tree/v5.17.2
https://github.com/facebook/rocksdb/tree/v5.17.2
https://github.com/tensorflow/tensorflow/tree/v2.1.0
https://github.com/tensorflow/tensorflow/tree/v2.1.0
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://rocksdb.org/
https://spdk.io/
https://spdk.io/
https://engineering.linkedin.com/blog/2021/homepage-feed-multi-task-learning-using-tensorflow
https://engineering.linkedin.com/blog/2021/homepage-feed-multi-task-learning-using-tensorflow
https://engineering.linkedin.com/blog/2021/homepage-feed-multi-task-learning-using-tensorflow
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/theoanab/SILK-USENIXATC2019
https://github.com/theoanab/SILK-USENIXATC2019
https://github.com/google/leveldb
https://github.com/google/leveldb

[25] Ajay Gulati, Arif Merchant, and Peter J. Varman.
pClock: An Arrival Curve Based Approach for QoS
Guarantees in Shared Storage Systems. In 2007 ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, page 13–24.
ACM, 2007.

[26] Ajay Gulati, Ganesha Shanmuganathan, Xuechen
Zhang, and Peter Varman. Demand Based Hierarchical
QoS Using Storage Resource Pools. In 2012 USENIX
Annual Technical Conference. USENIX, 2012.

[27] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu
Jeong. Enlightening the I/O Path: A Holistic Approach
for Application Performance. In 15th USENIX Confer-
ence on File and Storage Technologies, pages 345–358.
USENIX, 2017.

[28] Andrew Kryczka. RocksDB Blog: Auto-tuned Rate
Limiter. https://rocksdb.org/blog/2017/12/18/
17-auto-tuned-rate-limiter.html.

[29] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An Informed Storage Cache for Deep Learning. In 18th
USENIX Conference on File and Storage Technologies.
USENIX, 2020.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. Gradient-based Learning Applied to
Document Recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[31] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. PSLO:
Enforcing the X th Percentile Latency and Throughput
SLOs for Consolidated VM Storage. In 11th European
Conference on Computer Systems. ACM, 2016.

[32] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence
Rouesnel, Baris Coskun, Ramesh Nallapati, Julio Del-
gado, Amir Sadoughi, Yury Astashonok, Piali Das, Can
Balioglu, Saswata Chakravarty, Madhav Jha, Philip Gau-
tier, David Arpin, Tim Januschowski, Valentin Flunkert,
Yuyang Wang, Jan Gasthaus, Lorenzo Stella, Syama
Rangapuram, David Salinas, Sebastian Schelter, and
Alex Smola. Elastic Machine Learning Algorithms
in Amazon SageMaker. In 2020 ACM SIGMOD In-
ternational Conference on Management of Data, page
731–737. ACM, 2020.

[33] Christopher R. Lumb, Arif Merchant, and Guillermo A.
Alvarez. Façade: Virtual storage devices with perfor-
mance guarantees. In 2nd USENIX Conference on File
and Storage Technologies. USENIX, 2003.

[34] Chen Luo and Michael J Carey. LSM-based storage
techniques: a survey. The VLDB Journal, 29(1):393–
418, 2020.

[35] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and
Madanlal Musuvathi. Retro: Targeted Resource Man-
agement in Multi-tenant Distributed Systems. In 12th
USENIX Symposium on Networked Systems Design and
Implementation, pages 589–603. USENIX, 2015.

[36] Jonathan Mace and Rodrigo Fonseca. Universal Context
Propagation for Distributed System Instrumentation. In
13th European Conference on Computer Systems. ACM,
2018.

[37] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot Tracing: Dynamic Causal Monitoring for Dis-
tributed Systems. ACM Transactions on Computer Sys-
tems, 35(4), December 2018.

[38] Ricardo Macedo, João Paulo, José Pereira, and Alysson
Bessani. A Survey and Classification of Software-
Defined Storage Systems. ACM Computing Surveys,
53(3), 2020.

[39] Paul Menage. Linux Control Groups. https:
//www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt.

[40] Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun
Zhu, Sharad Singhal, and Kang Shin. Maestro: Quality-
of-Service in Large Disk Arrays. In 8th ACM Inter-
national Conference on Autonomic Computing, page
245–254. ACM, 2011.

[41] Michael Mesnier, Feng Chen, Tian Luo, and Jason Akers.
Differentiated Storage Services. In 23rd ACM Sympo-
sium on Operating Systems Principles, pages 57–70.
ACM, 2011.

[42] Samantha Miller, Kaiyuan Zhang, Mengqi Chen, Ryan
Jennings, Ang Chen, Danyang Zhuo, and Thomas An-
derson. High Velocity Kernel File Systems with Bento.
In 19th USENIX Conference on File and Storage Tech-
nologies, pages 65–79. USENIX, 2021.

[43] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina
Ramesh, Jon Bringhurst, Indranil Gupta, and Roy H.
Campbell. Samza: Stateful Scalable Stream Processing
at LinkedIn. Proceedings of the VLDB Endowment,
10(12):1634–1645, 2017.

[44] Linux Man Page. proc - Process Information Pseudo-
File Sytem, 1994.

[45] Rogério Pontes, Dorian Burihabwa, Francisco Maia,
João Paulo, Valerio Schiavoni, Pascal Felber, Hugues
Mercier, and Rui Oliveira. SafeFS: A Modular Archi-
tecture for Secure User-Space File Systems: One FUSE
to Rule Them All. In 10th ACM International Systems
and Storage Conference. ACM, 2017.

USENIX Association 20th USENIX Conference on File and Storage Technologies 427

https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

[46] Yingjin Qian, Xi Li, Shuichi Ihara, Lingfang Zeng, Jür-
gen Kaiser, et al. A Configurable Rule Based Classful
Token Bucket Filter Network Request Scheduler for the
Lustre File System. In International Conference for
High Performance Computing, Networking, Storage and
Analysis, pages 6:1–6:12. ACM, 2017.

[47] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores Using Fragmented Log-Structured Merge Trees.
In 26th ACM Symposium on Operating Systems Princi-
ples, page 497–514. ACM, 2017.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-
genet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision, 115(3), 2015.

[49] Michael Sevilla, Noah Watkins, Ivo Jimenez, Peter
Alvaro, Shel Finkelstein, Jeff LeFevre, and Carlos
Maltzahn. Malacology: A Programmable Storage Sys-
tem. In 12th European Conference on Computer Sys-
tems, page 175–190. ACM, 2017.

[50] David Shue and Michael Freedman. From Applica-
tion Requests to Virtual IOPs: Provisioned Key-Value
Storage with Libra. In 9th European Conference on
Computer Systems. ACM, 2014.

[51] David Shue, Michael Freedman, and Anees Shaikh. Per-
formance Isolation and Fairness for Multi-Tenant Cloud
Storage. In 10th USENIX Symposium on Operating
Systems Design and Implementation, pages 349–362.
USENIX, 2012.

[52] Ioan Stefanovici, Bianca Schroeder, Greg O’Shea, and
Eno Thereska. sRoute: Treating the Storage Stack Like
a Network. In 14th USENIX Conference on File and
Storage Technologies, pages 197–212. USENIX, 2016.

[53] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-
fray, Lucy Zhang, and Peter Mattis. CockroachDB: The
Resilient Geo-Distributed SQL Database. In 2020 ACM
SIGMOD International Conference on Management of
Data, page 1493–1509. ACM, 2020.

[54] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas
Karagiannis, Antony Rowstron, Tom Talpey, Richard
Black, and Timothy Zhu. IOFlow: A Software-Defined
Storage Architecture. In 24th ACM Symposium on Oper-
ating Systems Principles, pages 182–196. ACM, 2013.

[55] Raghav Tulshibagwale. RocksDB at Nutanix.
https://www.nutanix.dev/2021/03/10/rocksdb-
at-nutanix/.

[56] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and
Erez Zadok. To FUSE or Not to FUSE: Performance
of User-Space File Systems. In 15th USENIX Confer-
ence on File and Storage Technologies, pages 59–72.
USENIX, 2017.

[57] Matthew Wachs and Michael Abd-El-Malek. Argon:
Performance Insulation for Shared Storage Servers. In
5th USENIX Conference on File and Storage Technolo-
gies. USENIX, 2007.

[58] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh,
Randy Katz, and Ion Stoica. Cake: Enabling High-
Level SLOs on Shared Storage Systems. In 3rd ACM
Symposium on Cloud Computing. ACM, 2012.

[59] Yin Wang and Arif Merchant. Proportional-Share
Scheduling for Distributed Storage Systems. In 5th
USENIX Conference on File and Storage Technologies,
pages 47–60. USENIX, 2007.

[60] Joel C. Wu and Scott A. Brandt. Providing Quality
of Service Support in Object-Based File System. In
24th IEEE Conference on Mass Storage Systems and
Technologies, pages 157–170. IEEE, 2007.

[61] Miguel Xavier, Israel De Oliveira, Fabio Rossi, Rob-
son Dos Passos, Kassiano Matteussi, and Cesar De Rose.
A Performance Isolation Analysis of Disk-Intensive
Workloads on Container-Based Clouds. In 2015 23rd
Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, pages 253–
260. IEEE, 2015.

[62] Suli Yang, Tyler Harter, Nishant Agrawal, Salini
Kowsalya, Anand Krishnamurthy, Samer Al-Kiswany,
Rini Kaushik, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. Split-Level I/O Scheduling. In 25th
ACM Symposium on Operating Systems Principles,
pages 474–489. ACM, 2015.

[63] Andy Yoo, Morris Jette, and Mark Grondona. Slurm:
Simple Linux Utility for Resource Management. In
Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, pages 44–60. Springer, 2003.

[64] Jianyong Zhang, Anand Sivasubramaniam, Qian Wang,
Alma Riska, and Erik Riedel. Storage Performance Vir-
tualization via Throughput and Latency Control. ACM
Transactions on Storage, 2(3):283–308, 2006.

[65] Timothy Zhu, Alexey Tumanov, Michael Kozuch, Mor
Harchol-Balter, and Gregory Ganger. PriorityMeister:
Tail Latency QoS for Shared Networked Storage. In 5th
ACM Symposium on Cloud Computing. ACM, 2014.

428 20th USENIX Conference on File and Storage Technologies USENIX Association

https://www.nutanix.dev/2021/03/10/rocksdb-at-nutanix/
https://www.nutanix.dev/2021/03/10/rocksdb-at-nutanix/

	Introduction
	Motivation and Challenges
	Paio in a Nutshell
	Abstractions in Paio
	High-level Architecture
	A Day in the Life of a Request

	I/O Differentiation
	I/O Enforcement
	Paio Interfaces and Usage
	Interfaces
	Integrating Paio in User-level Layers
	Building Enforcement Objects

	Implementation
	Use Cases and Control Algorithms
	Tail Latency Control in Key-Value Stores
	Per-Application Bandwidth Control

	Evaluation
	Paio Performance and Scalability
	Tail Latency Control in Key-Value Stores
	Per-Application Bandwidth Control

	Related Work
	Conclusion

