
PAIO: General, Portable I/O
Optimizations with Minor Application
Modifications
Ricardo Macedo1, Yusuke Tanimura2, Jason Haga2, Vijay Chidambaram3,
José Pereira1, João Paulo1

1 INESC TEC and University of Minho, 2 AIST, 3 UTAustin and VMware Research

Data-centric systems

2

•Data-centric systems have become an integral part of
modern I/O stacks

•Good performance for these systems often requires storage
optimizations

• Scheduling, caching, tiering, replication, …

•Optimizations are implemented in sub-optimal manner

•Data-centric systems have become an integral part of
modern I/O stacks

•Good performance for these systems often requires storage
optimizations

• Scheduling, caching, tiering, replication, …

•Optimizations are implemented in sub-optimal manner

Data-centric systems

3

There is a better way to implement
I/O optimizations

Challenge #1

4

Tightly coupled optimizations

• I/O optimizations are single purposed

•Require deep understanding of the
system’s internal operation model

•Require profound system refactoring

• Limited portability across systems

Application

I/O Scheduling
SILK [ATC19]

Caching
AC-Key [ATC20]

Tiering
SpanDB [FAST21]

Checksumming
Dong et al. [FAST21]

Key-Value Store

File System

Challenge #1

5

Application

I/O Scheduling
SILK [ATC19]

Caching
AC-Key [ATC20]

Tiering
SpanDB [FAST21]

Checksumming
Dong et al. [FAST21]

Key-Value Store

File System

Tightly coupled optimizations

• I/O optimizations are single purposed

•Require deep understanding of the
system’s internal operation model

•Require profound system refactoring

• Limited portability across systems

SILK’s I/O Scheduler
• Reduce tail latency spikes in RocksDB

• Controls the interference between
foreground and background tasks

• Required changing several modules,
such as background operation handlers,
internal queuing logic, and thread pools

Challenge #1

6

Decoupled optimizations

• I/O optimizations should be
disaggregated from the internal logic

•Moved to a dedicated I/O layer

•Generally applicable

• Portable across different scenarios

Application

I/O Scheduling
SILK [ATC19]

Caching
AC-Key [ATC20]

Tiering
SpanDB [FAST21]

Checksumming
Dong et al. [FAST21]

Key-Value Store

File System

Dedicated I/O layer
I/O Scheduling Caching

Tiering Checksumming

Challenge #2

7

Rigid interfaces

•Decoupled optimizations lose granularity
and internal application knowledge

• I/O layers communicate through rigid
interfaces

•Discard information that could be used
to classify and differentiate requests

Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

Challenge #2

8

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

75476
read

4096

1

•Decoupled optimizations lose granularity
and internal application knowledge

• I/O layers communicate through rigid
interfaces

•Discard information that could be used
to classify and differentiate requests

Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

75482
write
4096

2

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

75490
read

4096

3

Challenge #2

9

Information propagation

• Application-level information must be
propagated throughout layers

•Decoupled optimizations can provide the
same level of control and performance

Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75476
read

4096

1

foreground task

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75482
write
4096

2

flush

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75490
read

4096

3

compaction L1-L2

PAIO
• User-level framework for building portable and generally applicable optimizations

• Adopts ideas from Software-Defined Storage

• I/O optimizations are implemented outside applications as data plane stages

• Stages are controlled through a control plane for coordinated access to resources

• Enables the propagation of application-level information through context propagation

• Porting I/O layers to use PAIO requires none to minor code changes

10

PAIO design

11

User-level
(#3)

Information
propagation (#2)

Dedicated I/O
layer (#1)

Global visibility
(#4)

PAIO design

12

• I/O differentiation

• I/O enforcement

•Control plane interaction

Policy: limit the rate of RocksDB’s flush operations to X MiB/s

I/O differentiation

13

Identify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

I/O differentiation

14

Context {
workflow-id : 75756,
type : write,
context : flush,
size : 4096,
…

}

I/O differentiation

15

Context {
workflow-id : 75756,
type : write,
context : flush,
size : 4096,
…

}

I/O enforcement

16

PAIO currently supports Noop
and DRL enforcement objects

I/O enforcement

17

Requests return to their
original I/O path

Control plane interaction

18

Housekeeping rulesDifferentiation rules

Statistic
collection

Enforcement
rules

Implements the control algorithms for orchestrating
stages (e.g., tail latency control, per-application

bandwidth guarantees)

Tail Latency Control in LSM-based Key-Value Stores

19

RocksDB
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold

SILK
• I/O scheduler

• Allocates bandwidth for internal operations when client load is low

• Prioritizes flushes and low level compactions

• Preempts high level compactions with low level ones

• Required changing several core modules made of thousands of LoC

PAIO
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm

Tail Latency Control in LSM-based Key-Value Stores

20

RocksDB
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold

SILK
• I/O scheduler

• Allocates bandwidth for internal operations when client load is low
• Prioritizes flushes and low level compactions
• Preempts high level compactions with low level ones

• Required changing several core modules made of thousands of LoC

PAIO
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm

Tail Latency Control in LSM-based Key-Value Stores

21

RocksDB
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold

SILK
• I/O scheduler

• Allocates bandwidth for internal operations when client load is low
• Prioritizes flushes and low level compactions
• Preempts high level compactions with low level ones

• Required changing several core modules made of thousands of LoC

PAIO
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm

By propagating application-level information to the stage, PAIO can
enable similar control and performance as system-specific optimizations

Experimental setup

22

System configuration
• RocksDB, SILK, and PAIO

• 8 client threads

• 8 background threads: 1 flush and 7 compaction threads

• Memory usage limited to 1GB and I/O bandwidth to 200MB/s

Workloads

• Bursty clients (peaks and valleys)

• Initial valley of 300s at 5 KOps/s

• 100s peaks at 20 KOps/s and 10s valleys at 5 KOps/s

• Mixture, read-heavy, and write-heavy workloads

Mixture workload

23

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

50% read 50% write

Throughput: high variability due to constant flushes
and compactions

99th latency: high tail latency with peaks with an
average range between 3 and 15 ms

Mixture workload

24

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

50% read 50% write

Throughput: suffers periodic throughput drops due
to accumulated backlog

99th latency: low and sustained tail latency

Mixture workload

25

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

50% read 50% write

PAIO and SILK observe a 4x decrease in absolute tail latency

Read-heavy workload

26

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

90% read 10% write

99th latency: temporary performance degradation
due to accumulated backlog

Read-heavy workload

27

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

90% read 10% write

99th latency: after 400s, SILK preempts high level
compactions, achieving a tail latency between 1-2ms

Read-heavy workload

28

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

90% read 10% write

Sustained tail latency but higher than SILK, due to not preempting compactions

Write-heavy workload

29

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

10% read 90% write

99th latency: high latency spikes throughout the
entire execution

Throughput: large backlog of background tasks
leads to high throughput variability

Write-heavy workload

30

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

10% read 90% write

99th latency: SILK pauses high level compactions
and only serves high priority operations

Throughput: suffers periodic throughput drops due
to constant flushes

Write-heavy workload

31

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

10% read 90% write

Since flushes occur more frequently, PAIO slows down high level
compactions more aggressively, temporarily halting low level ones

Summary

32

PAIO, a user-level framework that enables system designers to build custom-made
data plane stages

• Combines ideas from Software-Defined Storage and context propagation

Decouples system-specific optimizations to dedicated I/O layers

Data plane stages
•Tail latency control in LSM-based KVS (RocksDB)

•Per-application bandwidth control in shared storage settings (TensorFlow)

Enables similar control and I/O performance as system-specific optimizations

Paper

33

Data plane stages built with PAIO
•Tail latency control in key-value stores (RocksDB)

•Per-application bandwidth control (TensorFlow)

•You can build your’s too!

Experiments
•Performance and scalability

•Profiling

•Mixture workload without rate limiting

•Per-application bandwidth results

PAIO is publicly available at dsrhaslab/paio

PAIO: General, Portable I/O
Optimizations with Minor Application
Modifications
Ricardo Macedo1, Yusuke Tanimura2, Jason Haga2, Vijay Chidambaram3,
José Pereira1, João Paulo1

1 INESC TEC and University of Minho, 2 AIST, 3 UTAustin and VMware Research

