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* Data-centric systems have become an integral part of
modern |/O stacks

* Good performance for these systems often requires storage
optimizations
» Scheduling, caching, tiering, replication, ...

* Optimizations are implemented in sub-optimal manner
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Data-centric systems

There Is a better way to implement
/0 optimizations

§8 kafka



Challenge #1

& Tightly coupled optimizations

* |/O optimizations are single purposed

* Require deep understanding of the
system’s internal operation model

* Require profound system refactoring

 Limited portability across systems
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SILK’s 1/0 Scheduler

* Reduce tail latency spikes in RocksDB

» Controls the interference between
foreground and background tasks

* Required changing several modules,
such as background operation handlers,
internal queuing logic, and thread pools



Challenge #1

Application

l l

Key-Value Store

® Decoupled optimizations

* |/O optimizations should be
disaggregated from the internal logic

 Moved to a dedicated |/0O layer

* Generally applicable PR R S ' ‘
. Dedicated 1/0 layer
* Portable across different scenarios

------------------------------------------------------------
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Challenge #2

Application

l l

© Rigid interfaces

° Decqupled optlmllzat.lcns lose granularity Key-Value Store

and internal application knowledge ) .
foreground flows

* |/O layers communicate through rigid Y v v vy
' ?
intertaces i compaction flows ) ( flush flows
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* Discard information that could be used . ’ 1 ‘

to classify and differentiate requests l I I
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. Key-value store operation
'« Workflow ID: 75476 '

x Operation type: read
i+ Operation size: 4096

. [ 4
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. Key-value store operation:
. * Workflow ID: 75482

x Operation type: write
i+ Operation size: 4096

. Key-value store operation:
t » Workflow ID: 75490 '

x Operation type: read .
+ + Operation size: [ 4096 )

------------------------------



Challenge #2

. . P ' Key-value store operation
_ _ Application . .« Workflow ID: 75476
Q Information propagation K .+ Operation type: read
l l . + + Operation size: [4096 :
A . . . . 7 , + Context: [t REe o |
* Application-level information must be Key-Value Stofe e L L L
propagated throughout layers K PR > YRR
! foreground flows,’ A ) Key-value store operation‘;
S , N ki + « Workflow ID: 75482
* Decoupled optimizations can provide the . v ¢,' ' . Operation type: [ KNS
same level of control and performance fczm prr——— ’;ush — .+ Operation size: 4096 ;
P ; . - Context: ;
vy *___J ¥t '
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; Key-value store operation:

'« Workflow ID: 75490
:  Operation type: read
x Operation size: 14096
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PAIO

User-level framework for building portable and generally applicable optimizations
Adopts ideas from Software-Defined Storage

* |/O optimizations are implemented outside applications as data plane stages

o Stages are controlled through a control plane for coordinated access to resources
Enables the propagation of application-level information through context propagation

Porting I/0 layers to use PAIO requires none to minor code changes

10



PAIO design

Global visibility
(#4)

Information
propagation (#2)

o—o Workflows

File System

' | — Monitoring flows

- - - Rules
User-level

(#3)

Dedicated 1/0 ‘)
layer (#1)
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PAIO design

| Application | 1
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Policy: limit the rate of RocksDB'’s flush operations to X MiB/s
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1/0 differentiation

Application

A \ 4
RocksDB

foreground flows 1/0 differentiation

% % % [select_channel (ctx)

File System

|dentify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

Channel,

[
—— -~

select object (ctx)

Control API
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1/0 differentiation

Application

RocksDB
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Context {
workf low—1d : 75756,
type : write,
context : flush,
size : 4096,
I3
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Control API
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1/0 differentiation

Application

RocksDB

$Es
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type : write,
context : flush,
size : 4090,
I3

I/0 differentiation
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Control API
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1/0 enforcement

Application
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RocksDB
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channel,
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PAIO currently supports Noop
and DRL enforcement objects

Control API
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1/0 enforcement

Application

A \ 4
RocksDB

token

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Requests return to thelir
original I/0 path

channel

channel,
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Channel,
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Control API
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Control plane interaction

Differentiation rules Housekeeping rules

X 7 PAIO §tage L i

RocksDB

1/0 differentiation =
-5
% % % % select channel (ctx) <
— Statistic
|; token  channel select object (ctx) § collection
channel, -
~ =
channel, g S =
Ny
'g . -.
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Enforcement
rules

Implements the control algorithms for orchestrating
stages (e.q., tail latency control, per-application
bandwidth guarantees)
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Tail Latency Control in LSM-based Key-Value Stores

RocksDB

* |nterference between foreground and background tasks generates high latency spikes
 L[atency spikes occur due to Lo-L1 compactions and flushes being slow or on hold

SILK
e |[/O scheduler
* Allocates bandwidth for internal operations when client load is low
* Prioritizes flushes and low level compactions
* Preempts high level compactions with low level ones

 Required changing several core modules made of thousands of LoC

PAIO
* Stage provides the I/0 mechanisms for prioritizing and rate limiting background flows
* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/O scheduling algorithm
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* |nterference between foreground and background tasks generates high latency spikes
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SILK
e |/O scheduler
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* Required changing several core modules made of thousands of LoC

PAIO
» Stage provides the I/0O mechanisms for prioritizing and rate limiting bAckground flows
* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/O scheduling algorithm
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Tail Latency Control in LSM-based Key-Value Stores

By propagating application-level information to the stage, PAIO can

enable similar control and performance as system-specific optimizations
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Experimental setup

System configuration
e RocksDB, SILK, and PAIO
* 8 client threads
* 8 background threads: 1 flush and 7 compaction threads
 Memory usage limited to 1GB and I/0 bandwidth to 200MB/s

Workloads
* Bursty clients (peaks and valleys)
* |nitial valley of 300s at 5 KOps/s
 100s peaks at 20 KOps/s and 10s valleys at 5 KOps/s
* Mixture, read-heavy, and write-heavy workloads
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Throughput
(KOps/s)
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Mixture workload
50% read 50% write
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Throughput: high variability due to constant flushes
and compactions
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99th Jatency: high tail latency with peaks with an
average range between 3 and 15 ms
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Mixture workload
50% read 50% write
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Throughput: suffers periodic throughput drops due 99th Jatency: low and sustained tail latency
to accumulated backlog
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Mixture workload
50% read 50% write
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PAIO and SILK observe a 4x decrease in absolute tail latency
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Read-heavy workload

90% read 10% write
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Throughput

99th |atency: temporary performance degradation
due to accumulated backlog
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Read-heavy workload

90% read 10% write
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99th |atency: after 400s, SILK preempts high level
compactions, achieving a tail latency between 1-2ms
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Read-heavy workload

90% read 10% write
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Sustained tail latency but higher than SILK, due to not preempting compactions
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Write-heavy workload
10% read 90% write
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Throughput: large backlog of background tasks 99th |atency: high latency spikes throughout the
leads to high throughput variability entire execution
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Throughput: suffers periodic throughput drops due 99th Jatency: SILK pauses high level compactions
to constant flushes and only serves high priority operations
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Write-heavy workload
10% read 90% write
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Since flushes occur more frequently, PAIO slows down high level

compactions more aggressively, temporarily halting low level ones
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Summary

PAIO, a user-level framework that enables system designers to build custom-made
data plane stages
 Combines ideas from Software-Defined Storage and context propagation

Decouples system-specific optimizations to dedicated 1/0 layers

Data plane stages
* Tail latency control in LSM-based KVS (RocksDB)
* Per-application bandwidth control in shared storage settings (TensorFlow)

Enables similar control and I/0 performance as system-specific optimizations
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