PAIO: General, Portable IO
Optimizations with Minor Application
Modifications

Ricardo Macedo!, Yusuke Tanimura2, Jason Haga?, Vijay Chidambarams,
José Pereiral, Joao Paulo?

1INESC TEC and University of Minho, 2 AIST, 3 UTAustin and VMware Research

&p
: —
e
2

Data-centric systems

N

L
. mongoDB

O PyTorch

kafka Y
6?%) S

* Data-centric systems have become an integral part of
modern |/O stacks

* Good performance for these systems often requires storage
optimizations
» Scheduling, caching, tiering, replication, ...

* Optimizations are implemented in sub-optimal manner

"

<

cassandra

ceph

Data-centric systems

There Is a better way to implement
/0 optimizations

§8 kafka

Challenge #1

& Tightly coupled optimizations

* |/O optimizations are single purposed

* Require deep understanding of the
system’s internal operation model

* Require profound system refactoring

 Limited portability across systems

Application

l

l

Key-Value Store

1/0 Scheduling

SILK [ATC19]

\

r

Caching

AC-Key [ATC20]
_ J

r

Tiering

SpanDB [FAST21]
\ J

N (

Checksumming

Dong et al. [FAST21]
\ J

Voo

R

File System

Challenge #1

& Tightly coupled optimizations

* |/O optimizations are single purposed

* Require deep understanding of the
system’s internal operation model

* Require profound system refactoring

 Limited portability across systems

Application

l

l

Key-Value Store

\

1/0 Scheduling

SILK [ATC19]

N

J

7

_

Caching

-

\

r

Tiering

.

\

f

_

Checksumming

‘ 1
.‘\ =
=

_J

\

File System

l

l

R

SILK’s 1/0 Scheduler

* Reduce tail latency spikes in RocksDB

» Controls the interference between
foreground and background tasks

* Required changing several modules,
such as background operation handlers,
internal queuing logic, and thread pools

Challenge #1

Application

l l

Key-Value Store

® Decoupled optimizations

* |/O optimizations should be
disaggregated from the internal logic

 Moved to a dedicated |/0O layer

* Generally applicable PR R S ' ‘
. Dedicated 1/0 layer
* Portable across different scenarios

--

File System

Challenge #2

Application

l l

© Rigid interfaces

° Decqupled optlmllzat.lcns lose granularity Key-Value Store

and internal application knowledge) .
foreground flows

* |/O layers communicate through rigid Y v v vy
' ?
intertaces i compaction flows) (flush flows

boob |

* Discard information that could be used . ’ 1 ‘

to classify and differentiate requests l I I

File System

Challenge #2

© Rigid interfaces

* Decoupled optimizations lose granularity
and internal application knowledge

* |/O layers communicate through rigid
interfaces

* Discard information that could be used
to classify and differentiate requests

Application

l Vo

24

Key-Value Stqr'é

i foreground flows,'

N

_/

IR AR IR T
?

é -)
compaction flows

vy o

1

File System

- I
- -~

. Key-value store operation
'« Workflow ID: 75476 '

x Operation type: read
i+ Operation size: 4096

. [4

. Key-value store operation:
. * Workflow ID: 75482

x Operation type: write
i+ Operation size: 4096

. Key-value store operation:
t » Workflow ID: 75490 '

x Operation type: read .
+ + Operation size: [4096)

Challenge #2

. . P ' Key-value store operation
_ _ Application . .« Workflow ID: 75476
Q Information propagation K .+ Operation type: read
l l . + + Operation size: [4096 :
A 7 , + Context: [t REe o |
* Application-level information must be Key-Value Stofe e L L L
propagated throughout layers K PR > YRR
! foreground flows,’ A) Key-value store operation‘;
S , N ki + « Workflow ID: 75482
* Decoupled optimizations can provide the . v ¢,' ' . Operation type: [KNS
same level of control and performance fczm prr——— ’;ush — .+ Operation size: 4096 ;
P ; . - Context: ;
vy *___J ¥t '
| 0
; Key-value store operation:

'« Workflow ID: 75490
: Operation type: read
x Operation size: 14096

File System

PAIO

User-level framework for building portable and generally applicable optimizations
Adopts ideas from Software-Defined Storage

* |/O optimizations are implemented outside applications as data plane stages

o Stages are controlled through a control plane for coordinated access to resources
Enables the propagation of application-level information through context propagation

Porting I/0 layers to use PAIO requires none to minor code changes

10

PAIO design

Global visibility
(#4)

Information
propagation (#2)

o—o Workflows

File System

' | — Monitoring flows

- - - Rules
User-level

(#3)

Dedicated 1/0 ‘)
layer (#1)

11

PAIO design

| Application | 1
PAI P s
: . A v O Stage ”obj enf -
e |/Q differentiation RocksDB , ,) = 17
“Toreground flows 1/0 differentiation < 3 E
% % % % .select channel (ctx) | <~ ~ §' ‘ ‘ ‘ °I_’ i <
*1/O enforcement S 22 = |
compaction flows | UUbely / U select obje::t(ctx) E
% | flush | channel, \% ~ B E
* Control plane interaction r"'Al',AI-O-S-ta-gét--'; foreground * | channel, 2 [sQ —1 | >|©
o dtast N S
= % — 1| 3] E Ll
File System O . T

Policy: limit the rate of RocksDB'’s flush operations to X MiB/s

12

1/0 differentiation

Application

A \ 4
RocksDB

foreground flows 1/0 differentiation

% % % [select_channel (ctx)

File System

|dentify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

Channel,

[
—— -~

select object (ctx)

Control API

13

1/0 differentiation

Application

RocksDB

¢S

A

\4

A \4
Context {
workf low—1d : 75756,
type : write,
context : flush,
size : 4096,
I3

I/0 differentiation

[

elect channel (ctx)

token channel

|
compactions

/N

Channel,

Channe

select object (ctx)

Control API

14

1/0 differentiation

Application

RocksDB

$Es

A

\4

A \/
Context {
workflow—-1id : 75756,
type : write,
context : flush,
size : 4090,
I3

I/0 differentiation

[

elect channel (ctx)

token channel

channel
+
Eiiiiiﬁil"!ﬁ%ﬁii!l
compactions

/N

Channel,

Channe

select object (ctx)

Control API

15

1/0 enforcement

Application

A \ 4
RocksDB

¢S

- -
—— -~

I/0 differentiation

[

elect channel (ctx)

token channel select object (ctx)

channel,

channel,

Channel,

PAIO currently supports Noop
and DRL enforcement objects

Control API

16

1/0 enforcement

Application

A \ 4
RocksDB

token

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Requests return to thelir
original I/0 path

channel

channel,

channel,

Channel,

=N
= -

select object (ctx)

Control API

17

Control plane interaction

Differentiation rules Housekeeping rules

X 7 PAIO §tage L i

RocksDB

1/0 differentiation =
-5
% % % % select channel (ctx) <
— Statistic
|; token channel select object (ctx) § collection
channel, -
~ =
channel, g S =
Ny
'g . -.
O -
Enforcement
rules

Implements the control algorithms for orchestrating
stages (e.q., tail latency control, per-application
bandwidth guarantees)

18

Tail Latency Control in LSM-based Key-Value Stores

RocksDB

* |nterference between foreground and background tasks generates high latency spikes
 L[atency spikes occur due to Lo-L1 compactions and flushes being slow or on hold

SILK
e |[/O scheduler
* Allocates bandwidth for internal operations when client load is low
* Prioritizes flushes and low level compactions
* Preempts high level compactions with low level ones

 Required changing several core modules made of thousands of LoC

PAIO
* Stage provides the I/0 mechanisms for prioritizing and rate limiting background flows
* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/O scheduling algorithm

19

Tail Latency Control in LSM-based Key-Value Stores

RocksDB

* |nterference between foreground and background tasks generates high latency spikes
 L[atency spikes occur due to Lo-L1 compactions and flushes being slow or on hold

SILK
e |/O scheduler

 Allocates bandwidth for internal operations when client load is low

* Prioritizes flushes and low level compactions

|
[) D avaltaala alfala _a - alaala Aala A a aa\v, - _a ala¥fa
\J \/ \/ \J \J U/ \J A" 7 V V \ \J

* Required changing several core modules made of thousands of LoC

PAIO
» Stage provides the I/0O mechanisms for prioritizing and rate limiting bAckground flows
* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/O scheduling algorithm

20

Tail Latency Control in LSM-based Key-Value Stores

By propagating application-level information to the stage, PAIO can

enable similar control and performance as system-specific optimizations

21

Experimental setup

System configuration
e RocksDB, SILK, and PAIO
* 8 client threads
* 8 background threads: 1 flush and 7 compaction threads
 Memory usage limited to 1GB and I/0 bandwidth to 200MB/s

Workloads
* Bursty clients (peaks and valleys)
* |nitial valley of 300s at 5 KOps/s
 100s peaks at 20 KOps/s and 10s valleys at 5 KOps/s
* Mixture, read-heavy, and write-heavy workloads

22

Throughput
(KOps/s)

R\

Mixture workload
50% read 50% write

YVYVVVY VvV ¥V VvV VvV vV V¥V
OF [T ROCKSDB | o1 o i o i b fin B M i 3 - B
OfF "~ LN M ol v [l il AR 1L | | el [R ¥ 3 -W- T

Throughput: high variability due to constant flushes
and compactions

O A B B

T Y-

1

99th Jatency: high tail latency with peaks with an
average range between 3 and 15 ms

23

R\

Throughput
(KOps/s)

Throughput
(KOps/s)
— DN

Mixture workload
50% read 50% write

S
|

RocksDB

S
1

-

-

Throughput: suffers periodic throughput drops due 99th Jatency: low and sustained tail latency
to accumulated backlog

24

Mixture workload
50% read 50% write

=S 10
= 2
=
EEE
on o
8@10
= <
H

—_— NI
o O

Throughput
(KOps/s)

F [ROCKSDB | <[i i o iy e o, 0 o 7 O

———

0 300 600 900 1200 0 300 600 900

Time (s)

PAIO and SILK observe a 4x decrease in absolute tail latency

25

1200

Read-heavy workload

90% read 10% write

F[CROCKSDB_] {7 == e oo

—_— N
oS O

(KOps/s)

,,

Throughput

99th |atency: temporary performance degradation
due to accumulated backlog

26

Read-heavy workload

90% read 10% write

5~ ! ! ! > 20

52 208 | ROCkSDB | 7777 mimmm o m a5 |
gﬂg OEEEEEEEEEEEFEF TR PFY b o ey oy YN AL d et PR ey Pt ey L OE 10 WIAUNIVIY]
S 1004t Y4t/ -y 44 4 A 4 & =

R N R Ry T — S5 WU e A
= .
£7 20

%D QQ 10_

o

B ¥

H

99th |atency: after 400s, SILK preempts high level
compactions, achieving a tail latency between 1-2ms

27

Read-heavy workload

90% read 10% write

5 ! ! ! >, 20

=5 20| RocksDB R T N LT T B =T T Y 0 TR | i S R
R S LTI LI TEEEEREEEE L T\, o o AN, SAVIOAIYY, Rt AV VYA Ao we e 8 S 1o WWIAMNUNNISY e
) O 10 ””” = C@ ~—"

R N R Ry T — S5 WU e A
H =S

£ 2 20f
o o

5 2 10F
=2 2

H

5~ i
£520
8@ 10F
=&

~

Sustained tail latency but higher than SILK, due to not preempting compactions

28

Write-heavy workload
10% read 90% write

é% 20r| RocksDB .,' v 1= X V'¢ ¢¢ 3 ¢¢ ¢¢ | Il ;;y T ‘ Q:;Q;;%(S) B S R e B [e RRRRIRRRE S IR

%DCE oy 0 1 NN L W R § £ ”5)

= ‘ | I ‘ 1 i : ’

) F¥ f f tfff ¢t t f1ftt Frrt
Throughput: large backlog of background tasks 99th |atency: high latency spikes throughout the
leads to high throughput variability entire execution

29

R\
-

Throughput
(KOps/s)

—_— NI
-
|

Throughput
(KOps/s)

Write-heavy workload
10% read 90% write

S
|

RocksDB | - "'I'::' BT SN YL

S
|

Throughput: suffers periodic throughput drops due 99th Jatency: SILK pauses high level compactions
to constant flushes and only serves high priority operations

30

Write-heavy workload
10% read 90% write

R\
o O
|

~| RocksDB :" T YT ¥ "'I';;' I : el " Ml ;;' Ll

Throughput
(KOps/s)

\l- M- - UM -

— DN
oS O
| |

Throughput
(KOps/s)

Throughput
(KOps/s)

0 300 600 900 1200 0 300 600 900 1200
Time (s) Time (s)

Since flushes occur more frequently, PAIO slows down high level

compactions more aggressively, temporarily halting low level ones

31

Summary

PAIO, a user-level framework that enables system designers to build custom-made
data plane stages
 Combines ideas from Software-Defined Storage and context propagation

Decouples system-specific optimizations to dedicated 1/0 layers

Data plane stages
* Tail latency control in LSM-based KVS (RocksDB)
* Per-application bandwidth control in shared storage settings (TensorFlow)

Enables similar control and I/0 performance as system-specific optimizations

32

Data
oTali3|I|aa?e stages built with PAIO
ency control i
*You C a.t|on bandwidth cont s (RocksDB
an build your’s too! rol (TensorFlow

600
Time (8)
X Auto-tuned, SILK, and PAIO:

percentile
20

00
ime (8)
1oad. TH

* Performa
nce and N
* Profiling scalability
o MiXtUre W
* Per-appli Orl_(load without rate limiti
plication bandwidth result iting
UItS

600
Time (s)
cksDB: Auto-mned, SILK, @

600
Time (8)

rkload-

PAIO is '
’ .
publicly available at dsrhaslab/
paio

33

PAIO: General, Portable IO
Optimizations with Minor Application
Modifications

Ricardo Macedo!, Yusuke Tanimura2, Jason Haga?, Vijay Chidambarams,
José Pereiral, Joao Paulo?

1INESC TEC and University of Minho, 2 AIST, 3 UTAustin and VMware Research

&p
: —
e
2

