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Data-centric systems
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•Data-centric systems have become an integral part of 
modern I/O stacks


•Good performance for these systems often requires storage 
optimizations

• Scheduling, caching, tiering, replication, …


•Optimizations are implemented in sub-optimal manner
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Data-centric systems
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There is a better way to implement 
I/O optimizations



Challenge #1

4

Tightly coupled optimizations

• I/O optimizations are single purposed


•Require deep understanding of the 
system’s internal operation model


•Require profound system refactoring


• Limited portability across systems

Application

I/O Scheduling 
SILK [ATC19]

Caching 
AC-Key [ATC20]

Tiering 
SpanDB [FAST21]

Checksumming 
Dong et al. [FAST21]

Key-Value Store

File System
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Tightly coupled optimizations

• I/O optimizations are single purposed


•Require deep understanding of the 
system’s internal operation model


•Require profound system refactoring


• Limited portability across systems

SILK’s I/O Scheduler 
• Reduce tail latency spikes in RocksDB


• Controls the interference between 
foreground and background tasks


• Required changing several modules, 
such as background operation handlers, 
internal queuing logic, and thread pools



Challenge #1

6

Decoupled optimizations

• I/O optimizations should be 
disaggregated from the internal logic


•Moved to a dedicated I/O layer


•Generally applicable


• Portable across different scenarios

Application

I/O Scheduling 
SILK [ATC19]

Caching 
AC-Key [ATC20]

Tiering 
SpanDB [FAST21]

Checksumming 
Dong et al. [FAST21]

Key-Value Store

File System

Dedicated I/O layer
I/O Scheduling Caching

Tiering Checksumming
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Rigid interfaces

•Decoupled optimizations lose granularity 
and internal application knowledge


• I/O layers communicate through rigid 
interfaces


•Discard information that could be used 
to classify and differentiate requests

Application

Key-Value Store

File System

foreground flows

compaction flows flush flows
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 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

75476
read

4096
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foreground flows

compaction flows flush flows

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

75482
write
4096

2

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

75490
read

4096

3



Challenge #2
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Information propagation

• Application-level information must be 
propagated throughout layers


•Decoupled optimizations can provide the 
same level of control and performance

Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75476
read

4096

1

foreground task 

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75482
write
4096

2

flush

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75490
read

4096

3

compaction L1-L2



PAIO
• User-level framework for building portable and generally applicable optimizations


• Adopts ideas from Software-Defined Storage


• I/O optimizations are implemented outside applications as data plane stages 

• Stages are controlled through a control plane for coordinated access to resources 

• Enables the propagation of application-level information through context propagation 

• Porting I/O layers to use PAIO requires none to minor code changes

10



PAIO design

11

User-level 
(#3)

Information 
propagation (#2)

Dedicated I/O 
layer (#1)

Global visibility 
(#4)



PAIO design
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• I/O differentiation


• I/O enforcement


•Control plane interaction

Policy: limit the rate of RocksDB’s flush operations to X MiB/s



I/O differentiation
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Identify the origin of POSIX operations (i.e., 
foreground, compaction, or flush operations)



I/O differentiation
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Context { 
workflow-id : 75756, 
type        : write, 
context     : flush, 
size        : 4096, 
… 

}



I/O differentiation
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Context { 
workflow-id : 75756, 
type        : write, 
context     : flush, 
size        : 4096, 
… 

}



I/O enforcement
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PAIO currently supports Noop 
and DRL enforcement objects



I/O enforcement
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Requests return to their 
original I/O path



Control plane interaction
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Housekeeping rulesDifferentiation rules

Statistic 
collection

Enforcement 
rules

Implements the control algorithms for orchestrating 
stages (e.g., tail latency control, per-application 

bandwidth guarantees)



Tail Latency Control in LSM-based Key-Value Stores
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RocksDB 
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold


SILK 
• I/O scheduler


• Allocates bandwidth for internal operations when client load is low

• Prioritizes flushes and low level compactions

• Preempts high level compactions with low level ones


• Required changing several core modules made of thousands of LoC


PAIO 
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows


• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm
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RocksDB 
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold


SILK 
• I/O scheduler


• Allocates bandwidth for internal operations when client load is low 
• Prioritizes flushes and low level compactions 
• Preempts high level compactions with low level ones


• Required changing several core modules made of thousands of LoC


PAIO 
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows


• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm

By propagating application-level information to the stage, PAIO can 
enable similar control and performance as system-specific optimizations



Experimental setup
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System configuration 
• RocksDB, SILK, and PAIO

• 8 client threads

• 8 background threads: 1 flush and 7 compaction threads

• Memory usage limited to 1GB and I/O bandwidth to 200MB/s


Workloads

• Bursty clients (peaks and valleys) 

• Initial valley of 300s at 5 KOps/s

• 100s peaks at 20 KOps/s and 10s valleys at 5 KOps/s

• Mixture, read-heavy, and write-heavy workloads



Mixture workload
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Throughput: high variability due to constant flushes 
and compactions

99th latency: high tail latency with peaks with an 
average range between 3 and 15 ms
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Throughput: suffers periodic throughput drops due 
to accumulated backlog

99th latency: low and sustained tail latency
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PAIO and SILK observe a 4x decrease in absolute tail latency



Read-heavy workload
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99th latency: temporary performance degradation 
due to accumulated backlog



Read-heavy workload
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99th latency: after 400s, SILK preempts high level 
compactions, achieving a tail latency between 1-2ms



Read-heavy workload
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Sustained tail latency but higher than SILK, due to not preempting compactions



Write-heavy workload
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99th latency: high latency spikes throughout the 
entire execution

Throughput: large backlog of background tasks 
leads to high throughput variability



Write-heavy workload
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99th latency: SILK pauses high level compactions 
and only serves high priority operations

Throughput: suffers periodic throughput drops due 
to constant flushes



Write-heavy workload
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Since flushes occur more frequently, PAIO slows down high level  
compactions more aggressively, temporarily halting low level ones



Summary
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PAIO, a user-level framework that enables system designers to build custom-made 
data plane stages

•  Combines ideas from Software-Defined Storage and context propagation 

Decouples system-specific optimizations to dedicated I/O layers


Data plane stages 
•Tail latency control in LSM-based KVS (RocksDB)

•Per-application bandwidth control in shared storage settings (TensorFlow)


Enables similar control and I/O performance as system-specific optimizations



Paper
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Data plane stages built with PAIO 
•Tail latency control in key-value stores (RocksDB)

•Per-application bandwidth control (TensorFlow)

•You can build your’s too!


Experiments 
•Performance and scalability

•Profiling

•Mixture workload without rate limiting

•Per-application bandwidth results


PAIO is publicly available at dsrhaslab/paio
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