
Protecting Metadata Servers From Harm Through
Application-level I/O Control

Ricardo Macedo∗, Mariana Miranda, Yusuke Tanimura†, Jason Haga†

Amit Ruhela�, Stephen Lien Harrell�, Richard Todd Evans‡, João Paulo
INESC TEC & University of Minho †AIST �TACC & UTAustin ‡Intel

Abstract—Modern large-scale I/O applications that run on
HPC infrastructures are increasingly becoming metadata-
intensive. Unfortunately, having multiple concurrent applications
submitting massive amounts of metadata operations can easily
saturate the shared parallel file system’s metadata resources,
leading to unresponsiveness of the storage backend and overall
performance degradation. To address these challenges, we present
PADLL, a storage middleware that enables system administrators
to proactively control and ensure QoS over metadata workflows
in HPC storage systems. We demonstrate its performance and
feasibility by controlling the rate of both synthetic and realistic
I/O workloads. Results show that PADLL can dynamically con-
trol metadata-aggressive workloads, prevent I/O burstiness, and
ensure I/O fairness and prioritization.

Index Terms—Storage, metadata, QoS, PFS, data plane.

I. INTRODUCTION

Modern supercomputers are establishing a new era in high-

performance computing (HPC), providing unprecedented com-

pute power that enables large-scale parallel applications to

run at massive scale [1]–[3]. However, contrary to long-lived

assumptions about HPC workloads where applications were

predominately compute-bound and write-dominated, modern

applications (e.g., Deep Learning training) are data-intensive,

read-dominated, and generate massive bursts of metadata

operations [4]–[7]. In fact, several HPC centers have already

observed a surge of metadata operations in their clusters, and

they expect this to become more severe over time [7], [8].

While these workloads demand scalable, high throughput,

and low latency storage, most TOP500 [9] supercomputers rely

on Lustre-like parallel file systems (PFSs), which provide a

centralized metadata management service [10]–[12]. In these

data centers, having multiple concurrent jobs competing for

shared I/O resources can lead to severe I/O contention and

overall performance degradation [8], [13], [14]. For example,

existing studies report that it is common for even a single

user’s I/O operations to saturate Lustre metadata resources,

leading to unresponsiveness of the file system, reduced speed

of computations of all running jobs, and even failures of

metadata servers [8], [14], [15].

While there are numerous solutions to assess the bottlenecks

generated from data workflows in HPC clusters [13], [14],

[16]–[23], the metadata counterpart has not received the same

level of attention, and existing approaches are suboptimal.

∗Corresponding author: Ricardo Macedo (ricardo.g.macedo@inesctec.pt).

Manual intervention. In several HPC research facilities, sys-

tem administrators stop jobs with aggressive I/O behavior (e.g.,
datasets made of small-sized files, unnecessary file system

requests) and temporally suspend job submission access for

users that do not comply with the cluster’s guidelines [8], [15].

While this helps to protect the file system from metadata-

aggressive users, this is a reactive approach that is only

triggered when the job has already slowed the storage system

and the other jobs in execution.

Intrusive to I/O layers. While solutions like GIFT [13] and

TBF [14] are designed to mitigate I/O contention and variabil-

ity, these are tightly coupled to the system implementation and

require high intrusiveness to several layers of the HPC soft-

ware stack, including the shared file system, job scheduler, and

I/O libraries. Such an approach requires deep understanding

of the system’s internal operation model and profound code

refactoring, increasing the work needed to maintain and port it

to new platforms. For instance, optimizations made at Lustre

may not be directly applicable over other file systems, like

BeeGFS or PVFS, as even though they share a similar high-

level design, the internal logic differs across implementations.

Partial visibility and I/O control. Some solutions overcome

the previous challenge by actuating at the compute node

level, enabling QoS control from the application-side, thus

not requiring changes to core layers of the I/O stack [24].

However, these act in isolation (i.e., agnostic of other jobs),

being unable to holistically coordinate the I/O generated from

multiple jobs that compete for shared storage, thus leading to

I/O contention and waste of system resources [25], [26].

We propose PADLL, an application and file system agnostic

storage middleware that enables QoS control of metadata

workflows in HPC storage systems. Fundamentally, it allows

system administrators to proactively and holistically control

the rate at which POSIX requests are submitted to the PFS

from all running jobs in the HPC system. PADLL adopts

ideas from the Software-Defined Storage (SDS) paradigm [27],

following a decoupled design made of two planes of func-

tionality: control and data. The data plane is a multi-stage

component distributed over compute nodes, where each stage

mediates the I/O requests between a given application and

the shared file system. Specifically, stages transparently handle

application’s requests by intercepting POSIX calls (e.g., open,

close, read) and dynamically rate limiting them before

being submitted to the PFS. This enables general applicability

573

2022 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/22/$31.00 ©2022 IEEE
DOI 10.1109/CLUSTER51413.2022.00075

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

78
-1

-6
65

4-
98

56
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
U

ST
ER

51
41

3.
20

22
.0

00
75

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

and cross-compatibility with POSIX-compliant file systems.

The control plane is a logically centralized entity with global

system visibility. It acts as a global coordinator that contin-

uously monitors and manages all running jobs by adjusting

the I/O rate of each data plane stage. It does so by enabling

system administrators to express rate limiting rules at per-job,

group of jobs, or cluster-wide granularity. For example, rules

can be as simple as statically rate limiting requests of a given

job, to more complex ones, such as dynamically adjusting the

metadata rate of all jobs according to workload and system

variations, which can be expressed as control algorithms (e.g.,
proportional sharing [28], dominant resource fairness [29]).

We implemented an early prototype of PADLL, as well as

set of rules and a proportional sharing control algorithm. We

validate its performance and feasibility through a set of ex-

periments to control the rate of I/O workflows under different

scenarios. Experiments were conducted using IOR [30] and

real traces of metadata operations collected from a Lustre file

system at AIST1, and demonstrate that PADLL:

• Effectively controls the rate of I/O workflows at different

granularities, including request type (e.g., open, close,

read), request class (e.g., metadata, data), and job.

• Prevents I/O burstiness and is able to control metadata-

aggressive workloads through static and dynamic rates.

• Coordinates the rate of multiple concurrent jobs in holis-

tic fashion, ensuring I/O fairness and prioritization.

• Induces negligible overhead across all testing scenarios.

In summary, this paper provides the following contributions:

• A study that analyzes traces from a production Lustre file

system at AIST, and reveals new insights about metadata

operations at scale (§II).

• PADLL, an application and file system agnostic storage

middleware that enables QoS over metadata workflows in

HPC storage systems (§III).

• An experimental evaluation that showcases PADLL’s

performance and applicability under different scenarios

using both synthetic and realistic I/O workloads (§IV).

II. BACKGROUND AND MOTIVATION

Parallel file systems are the storage backbone of HPC in-

frastructures, being used to store and retrieve, on a daily basis,

petabytes of data from hundreds to thousands of concurrent

jobs. In this paper, we focus on Lustre-like file systems (e.g.,
Lustre [10], [31], BeeGFS [11], PVFS [12]), which are present

in most TOP500 supercomputers. A typical Lustre-like file

system consists of several building blocks. Metadata Servers
(MDSs) maintain the file system namespace (e.g., file names

and layouts, permissions, extended attributes) and handle all

metadata operations. The namespace is persisted in Metadata
Targets (MDTs) nodes. Data operations are serviced by Object

Storage Servers (OSSs) which are connected to compute nodes

via high-speed interconnects, and store files on Object Storage

Targets (OSTs). Files are typically distributed across multiple

OSTs for parallelism and availability. File system clients reside

1[Online] Available: https://www.aist.go.jp/index en.html

0
150
300
450
600
750

0 5 10 15 20 25 30T
h

ro
u

g
h

p
u

t
(K

O
p

s/
s)

Time (days)

ABCI

Fig. 1: Throughput of metadata operations in PFSA.

at compute nodes and access the file system using standard

POSIX system calls (e.g., open, read, close).

Depending on the scale of the file system, metadata nodes

assume different configurations [32]. In some deployments,

the namespace is persisted across multiple MDTs and a single

MDS handles all metadata operations, having additional MDS

nodes has standby replicas; in others, different MDSs/MDTs

manage/persist different parts of the namespace.

Metadata workflow and limitations. Regardless of the appli-

cation, workload, or job, whenever a file needs to be accessed

(e.g., create/open/remove file, access control, extended at-

tributes) the main I/O path always flows through the metadata

service. When creating files, the file system client issues a

remote procedure call (RPC) to the MDS, which will create

a new entry in the namespace and assign OSTs in a capacity-

balanced manner to persist the data; for existing files, the MDS

retrieves information about the file stripe and OST mappings.

When used at scale, this centralized design comprises sev-

eral limitations that can severely bottleneck the file system and

impact the performance of all running jobs. First, different

operations carry different costs to the PFS. Depending on

the file system implementation, read-only operations such

as getattr only require acquiring read-locks, while opera-

tions like open, close, and unlink require more expensive

locking, as they need to update the namespace state [31],

[33]. Other operations, such as mkdir or rename, require

even stronger guarantees (e.g., atomicity). Second, modern

workloads, such as DL training, comprise large-scale datasets

that can reach TiB in size and are made of multiple small-

sized files (e.g., FMA [34], OpenImages [35]), which generate

high and continuous bursts of metadata operations. Third, the

number of file system clients is several times higher than

available MDSs, which can easily become saturated when

several concurrent jobs have aggressive I/O metadata behavior.

A. Analyzing Metadata Operations in Production Clusters

We analyze the logs of a Lustre file system from the AI

Bridging Cloud Infrastructure (ABCI) [36]. The storage at

ABCI is made of multiple PFSs. Of these, the /group area

is managed by a DDN ExaScaler Lustre file system that is

composed of 2 MDSs in a hot-standby configuration, backed

by 6 MDTs, and 36 OSTs that provide 9.5 PiB of storage

capacity. For simplicity, we refer to this file system as PFSA.

We monitored the I/O activity of the most frequent metadata

operations at MDSs/MDTs, using DDNStorage’s LustrePerf-

Mon [37]. We collected per-MDT performance statistics for

open, close, getattr, setattr, rename, mkdir, mknod,

rmdir, statfs, sync, and unlink operations. The logs

report per-operation performance statistics captured with 1-

minute samples over a 30-day observation period. Addition-

574

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

0
50
100
150
200
250

0 5 10 15 20 25 30

close

getattr

open

rename

C
u

m
u

la
ti

ve
O

p
s

(x
10

9)

Time (days)

0
0.5
1

1.5
2

2.5

0 5 10 15 20 25 30

mkdir

mknod

rmdir

setattr

statfs

sync

unlink

Fig. 2: Cumulative metadata operations in PFSA.

ally, we also monitored the I/O bandwidth (read and write)

observed by OSSs over the same collection period.

Overall metadata load. We first examine the throughput of

metadata operations throughout the overall observation period.

Fig. 1 depicts the rate of all collected metadata operations at

PFSA. Metadata operations are submitted at a massive rate,

with an average of ≈ 200 KOps/s. Over different periods,

PFSA continuously serves requests over 400 KOps/s, which

last several hours to days, and experiences bursts that peak

at 1 MOps/s. Indeed, the workload is extremely volatile,

frequently experiencing periods of low throughput (50 KOps/s

or lower) to immediately spike up to 450 KOps/s (or higher).

Interestingly, we observe that this load is much higher than

those reported in other clusters [7]. For example, a study

from NERSC reports that the PFS shared by the Edison and

Cori supercomputers had an average rate of 9.7 KOps/s and

7 KOps/s for open and close operations, respectively; while

PFSA experiences 29 KOps/s and 43.5 KOps/s. While the

metadata load may depend on different factors, we suspect

that these values mainly stem from the type of jobs conducted

at ABCI, which are mostly AI-oriented (e.g., DL training).

Observation #1. Modern I/O workloads are generating massive
amounts of metadata operations, with high throughput rates,
and bursts that reach 1 MOps/s. Based on previous studies [7]
and the results observed from PFSA, it is expected that these
values will continue to increase over time. This means that only
ensuring QoS for data workflows is not enough, and metadata
operations should be handled as well.

Type and frequency of metadata operations. Fig. 2 shows

the type and amount of metadata operations in PFSA. The

most predominant operations are open, close, getattr, and

rename, which account for 98% of the total load. Notori-

ously, several of these are particularly costly to the PFS and

more prone to cause I/O contention. Specifically, open and

close system calls may require acquiring several locks in the

namespace to update internal state of the namespace; rename

needs to ensure atomicity, which is particularly expensive, for

example, when moving files between MDT servers [31], [33].

As for getattr operations, even though they are less costly

than previous ones, PFSA received almost 250 billion requests

during the observation period (average rate of 95.8 KOps/s),

which can still bottleneck the system.

Observation #2. The most predominant metadata operations
(i.e., open, close, rename) entail higher costs to the PFS
due to namespace housekeeping and locking, being very likely
to saturate metadata resources. As such, operations should be
controlled with fine-granularity, ensuring that operations with
different costs have different QoS levels.

P3
P1

P2

OSTN

App1
PADLL stage

compute node 1

PFS client

job1

App1
PADLL stage

compute node 2

PFS client

App2
PADLL stage

PFS client
compute node 3

job2

AppN
PADLL stage

PFS client
compute node N

jobN

OST1

MDS2

MDS1

OST2

metadata workflows data workflows PADLL workflows

PADLL
control
plane

Fig. 3: PADLL high-level architecture. It is composed of a control
plane and multiple data plane stages.

III. PADLL STORAGE MIDDLEWARE

PADLL is a storage middleware that enables system admin-

istrators to proactively control and ensure QoS over metadata

workflows of all running jobs in HPC infrastructures. Its

design is built under the following core principles.

Decoupled design. PADLL follows a decoupled design that

separates the I/O logic into two planes of functionality – the

data plane implements the mechanisms that are applied over

requests (e.g., rate limiting), while the control plane defines

the policies that control them (e.g, static rate, I/O fairness).

Application and PFS-agnostic. PADLL does not require code

changes to any core layers of the HPC I/O stack, being

agnostic of the applications it is controlling as well the PFS to

which the requests will be submitted to. This makes PADLL

applicable over different applications and compatible with

POSIX-compliant storage systems.

Fine-grained I/O control. PADLL classifies and differentiates

requests at different levels of granularity, which allows apply-

ing different types of policies (e.g., only rate limit open calls,

rate limit all metadata operations).

Global visibility. PADLL ensures that all stages operate in co-

ordination, controlling the rate of all running jobs holistically.

Fig. 3 outlines PADLL’s high-level architecture, which is

composed of a data plane (§III-A) and a control plane (§III-B).

A. Data Plane

The data plane is a multi-stage component that actuates at

the compute node level. Each stage sits between the appli-

cation and the file system client, and transparently intercepts

POSIX requests before being submitted to the PFS.

To control the rate of I/O workflows of a given job, multiple

PADLL stages may be used. Under single node jobs, a single

data plane stage controls all I/O workflows, which is the case

of Fig. 3’s job2 where App2 only runs at compute node 3. For

distributed jobs, where application’s instances run on separate

compute nodes, multiple data plane stages need to be set (one

per instance). For example, as depicted in Fig. 3’s job1, two

stages are needed to rate limit App1’s I/O workflows since it

executes in compute nodes 1 and 2.

Rate limiting I/O workflows with PADLL requires two steps.

Request differentiation. Given that applications may submit

POSIX requests that are not destined towards the PFS, PADLL

575

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

needs to identify which requests it should handle. Requests

are differentiated based on a specific set of attributes that

characterize them, including the request type (e.g., open,

getattr), request class (e.g., metadata, data), path name,

and others. For each intercepted request, the stage verifies

its attributes and determines if the request should be rate

limited or be directly submitted to the file system without any

throttling (for example, requests that are submitted to POSIX

file systems – xfs, NFS server – other than the PFS).

Rate limiting. Internally, stages are organized in multiple

queues, each with a token-bucket that determines the rate of

its requests. A token-bucket is a commonly used mechanism

for controlling the rate and burstiness of I/O workflows [28].

Each of these queues only serves a specific set of requests.

For example, queue1 handles metadata, while queue2 handles

data operations; queue3 only handles open calls; queue4
throttles the requests submitted to /scratch/foo. The type

of requests each queue handles, as well as the rate set to each

token-bucket, are defined by the control plane. After being

throttled, requests are then submitted to the PFS.

B. Control Plane

The control plane is a logically centralized component

with system-wide visibility that orchestrates how the I/O

workflows of all running jobs should be handled. It does so by

continuously communicating with stages to collect I/O metrics

(e.g., workflows’ rate) and enforce new rates to respond to

workload variations or new rules set by system administrators.

It enables system administrators to define how the system

should act (i.e., control logic), either by specifying simple
policies such as individually set the rate for open calls of a

given job, or through control algorithms, such as dynamically

reserve shares of metadata operations for all jobs in the cluster.

In particular, control algorithms are implemented in a

feedback control loop manner [28], where the control plane

repeatedly 1) collects metrics from stages, 2) verifies if all

policies are being met, and 3) adjusts stages with a new rate.

Orchestrating stages from the same job. Every time a job

starts, its corresponding stages are initialized and connected to

the control plane. Stages send to the control plane information

that characterizes the job and the node it is running (e.g.,
job-ID, PID, hostname, user). Based on this, the control

plane knows which job each stage respects to, orchestrating

the stages that belong to the same job-ID as a single one.

C. Prototype Implementation

We have implemented a PADLL prototype with 16K (data
plane) and 6K (control plane) lines of C++ code. The data

plane exposes a POSIX interface that reimplements 42 calls

from different operation classes, including data, metadata, ex-

tended attributes, and directory management. It uses LD_PRE-

LOAD to transparently intercept I/O requests, which are then

differentiated and rate limited before going to the PFS. The

logic for rate limiting requests (e.g., queues, token-buckets)

was built using PAIO, a framework for building custom-made,

user-level storage data planes [25]. The control plane imple-

ments the necessary building blocks for specifying policies

(and control algorithms) and controlling data plane stages (e.g.,
collect statistics, submit rules). Communication between the

control plane and data plane stages is established through RPC

calls, using the gRPC framework [38].

IV. EVALUATION

Our evaluation seeks to answer the following questions:

• Can PADLL enforce policies at different granularities?

• Can PADLL control I/O burstiness?

• Can PADLL enforce I/O prioritization and proportional

sharing over multiple concurrent jobs?

• What is the overhead of using PADLL?

Experimental testbed. Experiments were conducted on com-

pute nodes of the Frontera supercomputer [39], equipped with

two 28-core Intel Xeon processors, 192 GiB of RAM, and

a single 240 GiB SSD. Software-wise, it uses CentOS 7.9

with the Linux kernel v3.10 and the xfs file system. The

production PFS is a Lustre file system.

Benchmarks and workloads. We conducted experiments

using both data and metadata workloads. For data workloads,

we used IOR [30]. To generate realistic metadata workloads,

we implemented a trace replayer that submits (“replays”)

metadata operations with an identical request distribution as

the one observed from the logs collected at PFSA. The replayer

is multi-threaded, and each thread submits a specific operation

type (i.e., open, close, getattr) at a rate that follows the

same performance curve as the original logs. The rate of each

operation was scaled-down to half, to ensure that the file

system could serve them without bottlenecking. The execution

period was also accelerated, where each second of the replayer
corresponds to a minute’s worth of operations in the original

log. The trace used in the experiments corresponds to the

metadata operations of a single MDT server of PFSA.

Methodology. Unless stated otherwise, experiments were con-

ducted under three setups: baseline, which represents the

benchmark (IOR or trace replayer) without using PADLL;

passthrough, where POSIX operations submitted by the

benchmark are intercepted by PADLL but are not rate limited;

and padll, where POSIX operations submitted by the bench-

mark are intercepted by PADLL and throttled at a given rate.

For all experiments, the control plane runs at a dedicated

compute node, and each job respects to the execution of IOR
or the trace replayer under a specific workload. To prevent

overloading the production PFS, and cause I/O contention

and interference to concurrent jobs in the system, all meta-

data workloads were submitted to the local file system. IOR
experiments were conducted using the PFS.

A. Per-operation Type and Class Rate Limiting

Per-operation type. First, we demonstrate how PADLL en-

ables system administrators to control the rate of specific

operations. Under this scenario, both IOR and trace replayer
were configured to submit a single operation type. For all

576

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

0
12
24
36
48

baseline padll

T
h

ro
u

g
h

p
u

t

Time (minutes)

open
20k 10k 20k 10k 5k 20k

0
20
40
60
80

0 6 12 18 24 30 36

close
35k 10k 30k 20k 10k 20k

0
60
120
180
240 getattr

25k 50k 100k 50k 50k 25k

0
75
150
225
300

0 6 12 18 24 30 36

metadata
50k 100k 125k 75k 100k 50k

0
0.6
1.2
1.8
2.4 read

1.0 1.5 2.0 2.5 1.5

0
0.5
1.0
1.5
2.0

0 1 2 3 4 5

write

0.75 1.25 1.75 2.25 0.75

Fig. 4: Per-operation type/class rate limiting. Experiments show that PADLL can enforce different rate limits over different POSIX operations.

experiments, PADLL was configured to throttle operations with

a static rate, whose value changes every N minutes (6 minutes

for metadata and 1 minute for data operations) upon instruction

of the system administrator (i.e., rule defined on the control

plane). Fig. 4 depicts the results of all setups under different

operation types, namely open, close, and getattr.
At all times, padll is able to control the rate of all operations,

never exceeding the configured limits. Over several periods,

padll follows the same performance curve as baseline, as

observed in open between 12 and 18 minutes. This is because,

the limit set by the system administrator (for that interval)

is higher than the rate at which the replayer submits opera-

tions. Analogously, we also observe periods where the padll
setup achieves higher throughput than baseline, as observed

in getattr between 6 and 12 minutes. This occurs when

operations are being aggressively rate limited (i.e., the original

rate is significantly higher than the defined limit), creating a

backlog of operations to be executed. Experiments were also

conducted for the rename operation type, of which we report

similar findings as the aforementioned operations.
We observe similar results for data-oriented operations,

namely read and write. However, since these are being

submitted to the PFS, we observe more variability.

Per-operation class. We now demonstrate how PADLL con-

trols the workflows of a given operation class (i.e., metadata).

The trace replayer spawns four threads, one for each op-

eration type. Fig. 4 (metadata) depicts the obtained results.

The throughput corresponds to the accumulated rate of all

replayer threads. Again, padll effectively controls the rate of

all metadata operations throughout the overall testing period.

Overhead. To evaluate the overhead imposed by PADLL, we

conducted a set of experiments with the passthrough setup.

When comparing passthrough with baseline, the overhead

is negligible, never degrading performance more than 0.9%

across all experiments. For figure clarity, passthrough is not

depicted in Fig. 4, as its performance line practically overlaps

with the baseline one.

B. Per-job Rate Limiting and QoS Control
We now demonstrate a scenario where PADLL controls

the I/O workflows of multiple jobs. Under this scenario, we

consider that the system administrator defines a maximum rate

of metadata operations that can be submitted to the PFS (from

all jobs). At all times, there are at most four jobs in the system,

each running the same workload (same as in §IV-A’s per-
operation class). Jobs are incrementally added to the system

every 3 minutes.

Setups. Experiments were conducted under four setups. Base-
line represents the current setup supported at most supercom-

puters, where all jobs execute without being rate limited. The

remainder setups are rate limited with PADLL. For these, we

set the PFS’s maximum metadata rate to 300 KOps/s. In the

Static setup, each job is rate limited to 75 KOps/s throughout

the entire execution. In Priority, jobs are also statically rate

limited but are given different rates; namely, job1 to job4 are

assigned with 40, 60, 80 and 120 KOps/s, respectively. In

Proportional sharing, we implemented a control algorithm

that enforces per-job metadata rate reservations, similar to

those in [25], [40]. At any given time, the algorithm ensures

that all jobs have access to a reserved metadata rate. However,

whenever there are leftover metadata operations (i.e., the

current metadata rate has not reached the maximum limit), the

algorithm distributes it among all active jobs in a proportional

manner. For this setup, we assign the reserved rate of each job

as in Priority. Fig. 5 depicts the results of all setups.

Baseline. Experiments were executed over 45 minutes. Throu-

ghout the entire execution, we observe that the workload is

volatile and bursty, with peaks that reached 800 KOps/s. When

all jobs are executing, there are several periods where the file

system continuously serves requests over 400 KOps/s.

Static. Throughout the entire execution, whenever a new job

is added, it is provisioned with its assigned rate (75 KOps/s).

PADLL ensures that the throughput of all jobs is sustained

and eliminates existing burstiness. Further, we observe that all

jobs finish in the same time as in Baseline. While this setup is

useful to equally distribute metadata rate across all jobs, it has

two main limitations: first, it does not allow jobs to execute

with different priorities; second, given that there are several

time periods where there is leftover metadata rate (e.g., �–�),

jobs may be rate limited more aggressively than needed.

Priority. Similarly to Static, PADLL ensures that all jobs are

provisioned with their rate throughout the entire execution.

However, when a job is set with low priority, its execution may

take longer than its corresponding unthrottled version since

metadata operations are rate limited more aggressively. We

observe this phenomenon for job1’s execution, which takes

20-min longer than in the Baseline and Static setups.

Proportional sharing. Under this scenario, all jobs finish

under 45 minutes. Whenever a new job enters (�–�) or

leaves the system (�–�), it is assigned with its proportional

metadata share. When all jobs are running (�), they are

assigned with their demanded rate. Compared to Baseline,

this setup eliminates I/O burstiness and provides sustained

577

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

0
100
200
300
400
500

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

T
h

ro
u

g
h

p
u

t
(K

O
p

s/
s)

Time (minutes)

baseline

1
2

3
4

5
6

7
0
70
140
210
280
350

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

T
h

ro
u

g
h

p
u

t
(K

O
p

s/
s)

Time (minutes)

static

1
2

3
4

5

6 7

0
70
140
210
280
350

0 6 12 18 24 30 36 42 56

Job4
Job3
Job2
Job1

T
h

ro
u

g
h

p
u

t
(K

O
p

s/
s)

Time (minutes)

priority

1
2

3
4

5 6 7

0
70
140
210
280
350

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

T
h

ro
u

g
h

p
u

t
(K

O
p

s/
s)

Time (minutes)

prop. sharing

1
2

3
4

5

6
7

Fig. 5: Per-job metadata control over Baseline, Static, Priority, and Proportional Sharing setups. All jobs (job1 to job4) execute the same
workload and are spawned at different times. � to � mark the moment when a job enters or leaves the system.

metadata performance. Compared to Static and Priority, it

ensures different priority rates, and whenever leftover metadata

rate is available, it shares it across active jobs.

C. Discussion

The purpose of this evaluation is to demonstrate that PADLL

can effectively control the rate of workflows, both data and

metadata, of multiple HPC jobs. Experiments involving meta-

data operations were conducted over the local file system to

prevent the baseline setup to cause harm to the production-

based PFS and negatively impact the performance of concur-

rent jobs in the cluster. Nevertheless, because PADLL actuates

at the system call level (user-space), it can intercept and handle

POSIX operations submitted to any in-kernel file system

registered in the Virtual File System layer, including local and

remote file systems (i.e., Lustre kernel client). As such, we

expect PADLL to achieve the same level of effectiveness and

performance when used over PFSs. Furthermore, since PADLL

orchestrates I/O workflows in holistic fashion, we expect that

control algorithms like Proportional sharing (§IV-B) can

improve the performance of jobs, over Baseline, when the

PFS is saturated (in terms of metadata operations).

V. RELATED WORK

HPC storage QoS. Many works are designed to mitigate

I/O contention in HPC storage stacks but ignore the impact

of metadata workflows [13], [16], [18], [20]–[22]. PADLL is

able to control the rate of both data and metadata workflows.

Other systems are directly implemented within core layers

of the HPC I/O stack, including the PFS [14], [18], [20],

[22], [23], scheduler [21], and I/O libraries [16], [17]. These

solutions are intrusive and offer limited maintainability and

portability. PADLL actuates at the compute node level and

does not require any changes to core layers of the I/O stack.

Similarly to PADLL, OOOPS transparently intercepts and rate

limits POSIX requests at compute nodes [24]. However, it does

not provide global visibility, being unable to enforce dynamic

and cluster-wide policies as those demonstrated in §IV-B.

SDS systems. PADLL builds on a large body of work on SDS

systems. Systems like IOFlow, sRoute, and PSLO, actuate at

the virtualization and block device layers, only controlling the

rate of read and write requests [40]–[43]. Others, such as

Retro and Crystal, implement resource management policies

over distributed storage systems [44]–[46], but are directly

implemented within the storage system itself, offering limited

maintainability and portability. PADLL is a bare-metal solution

that actuates at the compute node level, and transparently inter-

cepts and enforces POSIX requests (both data and metadata)

before being submitted to the PFS.

VI. CONCLUSION

We have presented PADLL, an application and PFS-agnostic

storage middleware that enables enforcing QoS policies over

metadata workflows in HPC clusters. With it, system adminis-

trators can proactively and holistically control the I/O rate of

all running jobs, and thus, prevent metadata-aggressive ones

from harming the PFS, as well as other jobs in execution.

Preliminary results show that PADLL can: i) control the rate

of I/O workflows at different granularities, ii) prevent I/O

burstiness, and iii) ensure I/O fairness and prioritization.

Moreover, the work presented in this paper opens the path

to interesting research directions including:

Control algorithms. Given the advantages of using control al-

gorithms as those discussed in §IV-B, it would be interesting to

explore others and analyze their impact in PFSs in production.

Control plane scalability. Currently, the control plane is a

centralized component that monitors and controls multiple

stages. To ensure PADLL can be used at scale, it is fundamental

to investigate the control plane’s scalability and dependability.

Additional experiments. To further assess PADLL’s contribu-

tions, it should be used under production-based PFSs, and eval-

uated with large-scale I/O applications (e.g., TensorFlow [47])

with different I/O workloads and access patterns.

ACKNOWLEDGEMENTS

This work is financed by: the ERDF - European Regional

Development Fund, through the Operational Programme for

Competitiveness and Internationalisation - COMPETE 2020

Programme under the Portugal 2020 Partnership Agreement,

and by National Funds through the FCT - Portuguese Foun-

dation for Science and Technology, I.P. on the scope of

the UT Austin Portugal Program within project BigHPC,

with reference POCI-01-0247-FEDER-045924 (Mariana Mi-

randa); through PhD Fellowships SFRH/BD/146059/2019 and

PD/BD/151403/2021; and the UT Austin-Portugal Program, a

collaboration between the Portuguese Foundation of Science

and Technology and the University of Texas at Austin, award

UTA18-001217.

578

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Frontier Supercomputer,” https://www.olcf.ornl.gov/frontier/.
[2] “Aurora Supercomputer,” https://www.alcf.anl.gov/aurora.
[3] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,

H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya,
A. Asato, K. Morita, and T. Shimizu, “Co-Design for A64FX Many-
core Processor and “Fugaku”,” in International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2020.

[4] H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath,
“DLIO: A Data-Centric Benchmark for Scientific Deep Learning Appli-
cations,” in 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing. IEEE, 2021, pp. 81–91.

[5] M. Dantas, D. Leitão, P. Cui, R. Macedo, X. Liu, W. Xu, and J. Paulo,
“Accelerating Deep Learning Training Through Transparent Storage
Tiering,” in 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing. IEEE, 2022, pp. 21–30.

[6] S. W. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman,
S. Narasimhamurthy, and E. Laure, “Characterizing Deep-Learning I/O
workloads in TensorFlow,” in 2018 IEEE/ACM 3rd International Work-
shop on Parallel Data Storage & Data Intensive Scalable Computing
Systems. IEEE, 2018, pp. 54–63.

[7] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting I/O
Behavior in Large-Scale Storage Systems: The Expected and the Unex-
pected,” in International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2019.

[8] S. Liu, L. Huang, H. Liu, A. Ruhela, V. Trueheart, S. Lindsey, and
Q. Yuan, “Practice Guideline for Heavy I/O Workloads with Lustre
File Systems on TACC Supercomputers,” in Practice and Experience
in Advanced Research Computing. ACM, 2021.

[9] “The Top 500 List,” https://www.top500.org/.
[10] P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,”

in Proceedings of the 2003 Linux Symposium, vol. 2003, 2003, pp. 380–
386.

[11] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/O Characterization and Performance Evalu-
ation of BeeGFS for Deep Learning,” in 48th International Conference
on Parallel Processing. ACM, 2019.

[12] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, “PVFS: A Parallel
File System for Linux Clusters,” in 4th Annual Linux Showcase &
Conference. USENIX Association, 2000.

[13] T. Patel, R. Garg, and D. Tiwari, “GIFT: A Coupon Based Throttle-and-
Reward Mechanism for Fair and Efficient I/O Bandwidth Management
on Parallel Storage Systems,” in 18th USENIX Conference on File and
Storage Technologies. USENIX Association, 2020, pp. 103–119.

[14] Y. Qian, X. Li, S. Ihara, L. Zeng, J. Kaiser, T. Süß, and A. Brinkmann,
“A Configurable Rule Based Classful Token Bucket Filter Network Re-
quest Scheduler for the Lustre File System,” in International Conference
for High Performance Computing, Networking, Storage and Analysis.
ACM, 2017.

[15] L. Huang, Y. Wang, C.-Y. Lu, and S. Liu, “Best Practice of IO Workload
Management in Containerized Environments on Supercomputers,” in
Practice and Experience in Advanced Research Computing. ACM,
2021.

[16] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:
Mitigating I/O Interference in HPC Systems through Cross-Application
Coordination,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE, 2014, pp. 155–164.

[17] J. Carretero, E. Jeannot, G. Pallez, D. E. Singh, and N. Vidal, “Mapping
and Scheduling HPC Applications for Optimizing I/O,” in 34th ACM
International Conference on Supercomputing. ACM, 2020.

[18] X. Zhang, K. Davis, and S. Jiang, “IOrchestrator: Improving the Per-
formance of Multi-node I/O Systems via Inter-Server Coordination,”
in 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2010.

[19] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “Server-side
I/O Coordination for Parallel File Systems,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2011.

[20] X. Zhang, K. Davis, and S. Jiang, “QoS Support for End Users of
I/O-Intensive Applications Using Shared Storage Systems,” in 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011.

[21] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC Applications Under Congestion,” in 2015
IEEE International Parallel and Distributed Processing Symposium.
IEEE, 2015, pp. 1013–1022.

[22] S. Karki, B. Nguyen, and X. Zhang, “QoS Support for Scientific
Workflows using Software-Defined Storage Resource Enclaves,” in 2018
IEEE International Parallel and Distributed Processing Symposium.
IEEE, 2018, pp. 95–104.

[23] Y. Hua, X. Shi, H. Jin, W. Liu, Y. Jiang, Y. Chen, and L. He, “Software-
defined QoS for I/O in exascale computing,” CCF Transactions on High
Performance Computing, vol. 1, no. 1, pp. 49–59, 2019.

[24] L. Huang and S. Liu, “OOOPS: An Innovative Tool for IO Workload
Management on Supercomputers,” in 2020 IEEE 26th International
Conference on Parallel and Distributed Systems. IEEE, 2020, pp. 486–
493.

[25] R. Macedo, Y. Tanimura, J. Haga, V. Chidambaram, J. Pereira, and
J. Paulo, “PAIO: General, Portable I/O Optimizations With Minor
Application Modifcations,” in 20th USENIX Conference on File and
Storage Technologies. USENIX Association, 2022, pp. 413–428.

[26] D. Shue, M. Freedman, and A. Shaikh, “Performance Isolation and Fair-
ness for Multi-Tenant Cloud Storage,” in 10th USENIX Symposium on
Operating Systems Design and Implementation. USENIX Association,
2012, pp. 349–362.

[27] R. Macedo, J. Paulo, J. Pereira, and A. Bessani, “A Survey and
Classification of Software-Defined Storage Systems,” ACM Computing
Surveys, vol. 53, no. 3, May 2020.

[28] J.-Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer Science & Business
Media, 2001, vol. 2050.

[29] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types,” in 8th USENIX Symposium on Networked Systems
Design and Implementation. USENIX Association, 2011.

[30] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting the
I/O Performance of HPC Applications Using a Parameterized Synthetic
Benchmark,” in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing. IEEE, 2008.

[31] P. Braam, “The Lustre Storage Architecture,” 2019.
[32] “Lustre Metadata Service (MDS),” https://wiki.lustre.org/Lustre

Metadata Service (MDS).
[33] “Lustre MDC: mdc reint.c,” https://github.com/lustre/lustre-release/

blob/master/lustre/mdc/mdc reint.c, 2022.
[34] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “FMA: A

Dataset For Music Analysis,” 2016.
[35] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,

S. Kamali, S. Popov, M. Malloci, A. Kolesnikov et al., “The Open
Images Dataset v4,” International Journal of Computer Vision, vol. 128,
no. 7, pp. 1956–1981, 2020.

[36] “AI Bridging Cloud Infrastructure,” https://abci.ai/.
[37] “DDNStorage/LustrePerfMon: Lustre Monitoring System,” https://

github.com/DDNStorage/LustrePerfMon.
[38] “gRPC: A high performance, open source universal RPC framework,”

https://grpc.io/.
[39] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghattas, and

D. K. Panda, “Frontera: The Evolution of Leadership Computing at the
National Science Foundation,” in Practice and Experience in Advanced
Research Computing. ACM, 2020, pp. 106–111.

[40] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron
et al., “IOFlow: A Software-Defined Storage Architecture,” in 24th ACM
Symposium on Operating Systems Principles. ACM, 2013, pp. 182–
196.

[41] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska, “sRoute:
Treating the Storage Stack Like a Network,” in 14th USENIX Conference
on File and Storage Technologies. USENIX Association, 2016, pp.
197–212.

[42] N. Li, H. Jiang, D. Feng, and Z. Shi, “PSLO: Enforcing the Xth Per-
centile Latency and Throughput SLOs for Consolidated VM Storage,”
in 11th European Conference on Computer Systems. ACM, 2016, pp.
28:1–28:14.

[43] M. Mesnier, F. Chen, T. Luo, and J. Akers, “Differentiated Storage
Services,” in 23rd ACM Symposium on Operating Systems Principles.
ACM, 2011, pp. 57–70.

[44] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted
Resource Management in Multi-tenant Distributed Systems,” in 12th

579

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

USENIX Symposium on Networked Systems Design and Implementation.
USENIX Association, 2015, pp. 589–603.

[45] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica, “Cake:
Enabling High-level SLOs on Shared Storage Systems,” in 3rd ACM
Symposium on Cloud Computing. ACM, 2012, pp. 14:1–14:14.

[46] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-Artigas, P. Garcı́a-
López et al., “Crystal: Software-Defined Storage for Multi-tenant Object
Stores,” in 15th USENIX Conference on File and Storage Technologies.
USENIX Association, 2017, pp. 243–256.

[47] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation. USENIX Association, 2016, pp. 265–283.

580

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:41:34 UTC from IEEE Xplore. Restrictions apply.

