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High-Performance Computing

● Modern supercomputers offer a large magnitude of computing power.

○ Enables large-scale parallel applications to run at massive scale.

● HPC workloads are compute-bound and write-dominated.● HPC workloads are compute-bound and write-dominated.

Modern applications
are 

data-intensive and read-dominated

1



Protecting Metadata Servers From Harm Through Application-level I/O Control

High-Performance Computing

High load and burstiness of metadata operations!

Modern applications 
are 

data-intensive and read-dominated
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Metadata Study

● Analysis of the logs of a Lustre file system from the AI Bridging Cloud 
Infrastructure (ABCI) at AIST.

● We monitored the performance of the most frequent metadata 
operations at MDSs/MDTs.

○ Namely, open, close, getattr, setattr, rename, mkdir, mknod, rmdir, statfs, sync and unlink.

● Collected over a 30-days observation period.
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Metadata Study

Modern I/O workloads are generating massive amounts of metadata operations, 
with high throughput rates, and bursts that reach 1 MOps/s.

Overall metadata load
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Metadata Study

Operations should be controlled with fine-granularity, ensuring that operations with 
different costs have different QoS levels.

Type and frequency of metadata operations
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98% of the total load!

Atomicity

Expensive locking

Operations have different loads and costs!
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Can HPC storage systems 
sustain these workloads?
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The Metadata Challenge
Parallel File Systems

● Lustre-like parallel file systems provide a centralized metadata management service.

● Multiple concurrent jobs competing over shared I/O resources.

○ Severe I/O contention

○ Overall performance degradation

Existing solutions are suboptimal...
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The Metadata Challenge
Existing Solutions

○ Manual Intervention
E.g., System administrators stop jobs with aggressive I/O behavior.
Slow and reactive approach!

○ Intrusive to I/O layers
Solutions tightly coupled and intrusive to the system implementation (e.g., GIFT, TBF)
Low portability and maintainability!

○ Partial visibility and I/O control
Enabling QoS control from the application-side.
Isolated and uncoordinated QoS!

8



Protecting Metadata Servers From Harm Through Application-level I/O Control

Discussion

● Metadata operations are bursty and have high throughput rates.

● Some operations are more predominant than others.

● Different operations entail different costs.

● Existing solutions have limitations.

● The solution for this problem must:
○ Prevent I/O burstiness
○ Ensure fine-grained QoS control 
○ Be proactive
○ Be application and PFS-agnostic
○ Have global visibility
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PADLL

● Storage middleware that enables system administrators to proactively ensure 
QoS over metadata workflows.

● Adopts ideas from the Software-Defined Storage (SDS) paradigm.

○ Decoupled design that separates the I/O logic into two planes of functionality:

■ Data plane: application and file system agnostic middleware that applies storage policies 
over I/O requests (e.g., rate limiting).

■ Control plane: holistically orchestrates and defines storage policies (e.g., static rate, I/O 
fairness).
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● Multi-stage component that actuates at the compute node level.

● Sits between the application and the file system client.

● Transparently intercepts POSIX requests before being submitted to the file system.

PADLL
Data Plane
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● Handling requests requires two steps:

1. Request differentiation: Filters which requests should be rate limited or be directly submitted to the 
PFS.

2. Rate limiting: Stages are organized in multiple queues, each with a token-bucket that determines the 
rate of its requests.

PADLL
Data Plane
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PADLL

● Logically centralized component with system-wide visibility that orchestrates how 
the I/O workflows of all running jobs should be handled.

● Enables system administrators to define how the system should act.
○ Static policies – e.g., limit open operations at X Ops/s.

○ Dynamic policies – e.g., dynamically reserves shares of metadata operations.

Control Plane
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PADLL

The control plane continuously:

1. Collects I/O metrics from the data plane stages (e.g., workflows’ rate).

2. Computes if all policies are being met.

3. Enforces new rates to respond to workload or system variations.

Control Plane 
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Implementation

● Implemented in C++

○ Data plane: 

- 16K lines of code.

- Uses LD_PRELOAD to transparently intercept I/O requests.

- Built using PAIO[1], a framework for building custom-made user-level storage data planes.

○ Control plane: 

- 6K lines of code.

- Communicates with the data plane stages through RPC calls, using the gRPC framework.

[1] R. Macedo, Y. Tanimura, J. Haga, V. Chidambaram, J. Pereira, and J. Paulo, “PAIO: General, 
Portable I/O Optimizations With Minor Application Modifcations,” in 20th USENIX Conference on
File and Storage Technologies. USENIX Association, 2022, pp. 413–428.
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Evaluation

● Can PADLL enforce policies at different granularities?

● Can PADLL control I/O burstiness?

● Can PADLL enforce control algorithms over multiple concurrent jobs?

● What is the overhead of using PADLL?
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Evaluation

● Experimental testbed
○ Compute nodes of the Frontera supercomputer.
○ Two 28-core Intel Xeon processors.
○ 192 GiB of RAM, and a single 240 GiB SSD.
○ CentOS 7.9 with the Linux kernel v3.10 and the XFS file system.
○ Lustre file system as production PFS.

● Benchmarks and workloads
○ Data workloads: IOR
○ Metadata workloads: Real traces collected from the ABCI.

- Produced a trace replayer that replicates the original traces at a smaller scale.
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Evaluation

● Experiments

○ Per-operation type rate limiting
Specific operation (e.g., open, close).

○ Per-operation class rate limiting
E.g., metadata, data.

○ Per-job rate limiting and QoS control
Multi-job setup with global orchestration.
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Evaluation

● Setups:

○ Baseline
Benchmark (IOR or trace replayer) without using PADLL.

○ PADLL
Operations intercepted by PADLL and throttled at a given rate.

Per-operation type and class rate limiting
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Evaluation
Per-operation type rate limiting
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Load is higher than the 
20KOps/s limit

Load is lower than the 
20KOps/s limit

Operations in backlog
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Evaluation
Per-operation class rate limiting
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Evaluation
Per-operation class rate limiting
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Evaluation
Per-operation class rate limiting
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Operations intercepted by 
PADLL, but are not rate limited

Less than 0.9% across all experiments.
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Evaluation

● Multi-job, global orchestration experiment. 

● Setup:

○ There are at most four jobs in the system, each running the same workload.

○ Jobs are incrementally added to the system every 3 minutes.

○ When limiting, the PFS’s maximum metadata rate is set to 300 KOps/s.

Per-job rate limiting and QoS control
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Evaluation

● Setup:

○ Baseline
All jobs execute without being rate limited.

○ Static
Each job is rate limited with the same priority (75 KOps/s).

○ Priority
Each job is rate limited with a different priority (40, 60, 80 and 120 KOps/s).

○ Proportional sharing
Control algorithm that enforces per-job metadata rate reservations.

Per-job rate limiting and QoS control
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Evaluation
Per-job rate limiting and QoS control
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Evaluation
Per-job rate limiting and QoS control
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Volatile and bursty workload!
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75 KOps/s
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Static: Each job is rate limited with the same priority (75 KOps/s).

But, what if we want to enforce different priorities?

Sustained throughput and prevents bursty workloads!

Each job executes with a 
maximum rate of 75 KOps/s

300 KOps/s 75 KOps/s

75 KOps/s
75 KOps/s
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Per-job rate limiting and QoS control
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Priority: Each job is rate limited with a different priority (40, 60, 80 and 120 KOps/s).

Jobs can be unnecessarily rate limited!

Jobs have different priorities!

Each job follows its maximum rate

40 KOps/s

80 KOps/s
60 KOps/s

120 KOps/s

Job 1 takes 20 minutes longer!
Aggressively rate limited!

Unused rate!

300 KOps/s
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Proportional sharing: Control algorithm that enforces per-job metadata rate reservations.

Leftover rate is assigned to jobs!
Each reservation of metadata is respected!

Each job follows its maximum rate

40 KOps/s

80 KOps/s
60 KOps/s

120 KOps/s

Job 1 completes earlier!
Leftover rate is assigned to jobs!

300 KOps/s
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Discussion
● PADLL is able to:

○ Control the rate of I/O workflows  - data, metadata - at different granularities – type, class, 
per-job.

○ Prevent I/O burstiness.

○ Ensure I/O fairness and prioritization.

○ Orchestrate the storage system holistically.

Note: To prevent overloading the production PFS, all metadata workloads were submitted to the 
local file system, however, IOR experiments were conducted using the PFS.
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Conclusion

● PADLL is an application and PFS-agnostic storage middleware that enables 
enforcing QoS policies over workflows in HPC clusters.

● Enables system administrators to proactively and holistically control the I/O 
rate of all running jobs.

● Prevent metadata-aggressive jobs from harming the PFS, as well as other jobs 
in execution.
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Future Work
● Control algorithms

○ Explore other algorithms and analyze their impact in PFSs in production.

● Control plane scalability
○ The control plane is a centralized component, thus investigating its scalability and 

dependability is fundamental.

● Additional experiments
○ Evaluate with large-scale I/O applications (e.g., Tensorflow) with different I/O workloads and 

access patterns.

○ Evaluate the performance impact of PADLL for saturated PFSs.
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