
Protecting Metadata Servers From Harm Through
Application-level I/O Control

2nd Workshop on Re-envisioning Extreme-Scale I/O for Emerging Hybrid HPC Workloads
(REX-IO’22)

September 6, 2022

Ricardo Macedo, Mariana Miranda, João Paulo
INESC TEC & University of Minho

Amit Ruhela, Stephen Lien Harrell
TACC & UTAustin

Yusuke Tanimura, Jason Haga
AIST

Richard Todd Evans
Intel

Protecting Metadata Servers From Harm Through Application-level I/O Control

High-Performance Computing

● Modern supercomputers offer a large magnitude of computing power.

○ Enables large-scale parallel applications to run at massive scale.

● HPC workloads are compute-bound and write-dominated.● HPC workloads are compute-bound and write-dominated.

Modern applications
are

data-intensive and read-dominated

1

Protecting Metadata Servers From Harm Through Application-level I/O Control

High-Performance Computing

High load and burstiness of metadata operations!

Modern applications
are

data-intensive and read-dominated

2

Protecting Metadata Servers From Harm Through Application-level I/O Control

Metadata Study

● Analysis of the logs of a Lustre file system from the AI Bridging Cloud
Infrastructure (ABCI) at AIST.

● We monitored the performance of the most frequent metadata
operations at MDSs/MDTs.

○ Namely, open, close, getattr, setattr, rename, mkdir, mknod, rmdir, statfs, sync and unlink.

● Collected over a 30-days observation period.

3

Protecting Metadata Servers From Harm Through Application-level I/O Control

Metadata Study

Modern I/O workloads are generating massive amounts of metadata operations,
with high throughput rates, and bursts that reach 1 MOps/s.

Overall metadata load

0
150
300
450
600
750

0 5 10 15 20 25 30Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (days)

ABCI

Observation #1:

200 KOps/s

400 KOps/s

4

1 MOps/s

Protecting Metadata Servers From Harm Through Application-level I/O Control

Metadata Study

Operations should be controlled with fine-granularity, ensuring that operations with
different costs have different QoS levels.

Type and frequency of metadata operations

0
50
100
150
200
250

0 5 10 15 20 25 30

close
getattr

open
rename

C
um

ul
at

iv
e

O
ps

 (x
10

9)

Time (days)
0

0.5
1

1.5
2

2.5

0 5 10 15 20 25 30

mkdir
mknod
rmdir

setattr
statfs
sync

unlink

Observation #2:

5

98% of the total load!

Atomicity

Expensive locking

Operations have different loads and costs!

Protecting Metadata Servers From Harm Through Application-level I/O Control

Can HPC storage systems
sustain these workloads?

6

Protecting Metadata Servers From Harm Through Application-level I/O Control

The Metadata Challenge
Parallel File Systems

● Lustre-like parallel file systems provide a centralized metadata management service.

● Multiple concurrent jobs competing over shared I/O resources.

○ Severe I/O contention

○ Overall performance degradation

Existing solutions are suboptimal...

7

Protecting Metadata Servers From Harm Through Application-level I/O Control

The Metadata Challenge
Existing Solutions

○ Manual Intervention
E.g., System administrators stop jobs with aggressive I/O behavior.
Slow and reactive approach!

○ Intrusive to I/O layers
Solutions tightly coupled and intrusive to the system implementation (e.g., GIFT, TBF)
Low portability and maintainability!

○ Partial visibility and I/O control
Enabling QoS control from the application-side.
Isolated and uncoordinated QoS!

8

Protecting Metadata Servers From Harm Through Application-level I/O Control

Discussion

● Metadata operations are bursty and have high throughput rates.

● Some operations are more predominant than others.

● Different operations entail different costs.

● Existing solutions have limitations.

● The solution for this problem must:
○ Prevent I/O burstiness
○ Ensure fine-grained QoS control
○ Be proactive
○ Be application and PFS-agnostic
○ Have global visibility

9

Protecting Metadata Servers From Harm Through Application-level I/O Control

PADLL

● Storage middleware that enables system administrators to proactively ensure
QoS over metadata workflows.

● Adopts ideas from the Software-Defined Storage (SDS) paradigm.

○ Decoupled design that separates the I/O logic into two planes of functionality:

■ Data plane: application and file system agnostic middleware that applies storage policies
over I/O requests (e.g., rate limiting).

■ Control plane: holistically orchestrates and defines storage policies (e.g., static rate, I/O
fairness).

10

Protecting Metadata Servers From Harm Through Application-level I/O Control

● Multi-stage component that actuates at the compute node level.

● Sits between the application and the file system client.

● Transparently intercepts POSIX requests before being submitted to the file system.

PADLL
Data Plane

11

Protecting Metadata Servers From Harm Through Application-level I/O Control

● Handling requests requires two steps:

1. Request differentiation: Filters which requests should be rate limited or be directly submitted to the
PFS.

2. Rate limiting: Stages are organized in multiple queues, each with a token-bucket that determines the
rate of its requests.

PADLL
Data Plane

12

Protecting Metadata Servers From Harm Through Application-level I/O Control

PADLL

● Logically centralized component with system-wide visibility that orchestrates how
the I/O workflows of all running jobs should be handled.

● Enables system administrators to define how the system should act.
○ Static policies – e.g., limit open operations at X Ops/s.

○ Dynamic policies – e.g., dynamically reserves shares of metadata operations.

Control Plane

13

Protecting Metadata Servers From Harm Through Application-level I/O Control

PADLL

The control plane continuously:

1. Collects I/O metrics from the data plane stages (e.g., workflows’ rate).

2. Computes if all policies are being met.

3. Enforces new rates to respond to workload or system variations.

Control Plane

14

Protecting Metadata Servers From Harm Through Application-level I/O Control

Implementation

● Implemented in C++

○ Data plane:

- 16K lines of code.

- Uses LD_PRELOAD to transparently intercept I/O requests.

- Built using PAIO[1], a framework for building custom-made user-level storage data planes.

○ Control plane:

- 6K lines of code.

- Communicates with the data plane stages through RPC calls, using the gRPC framework.

[1] R. Macedo, Y. Tanimura, J. Haga, V. Chidambaram, J. Pereira, and J. Paulo, “PAIO: General,
Portable I/O Optimizations With Minor Application Modifcations,” in 20th USENIX Conference on
File and Storage Technologies. USENIX Association, 2022, pp. 413–428.

15

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation

● Can PADLL enforce policies at different granularities?

● Can PADLL control I/O burstiness?

● Can PADLL enforce control algorithms over multiple concurrent jobs?

● What is the overhead of using PADLL?

16

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation

● Experimental testbed
○ Compute nodes of the Frontera supercomputer.
○ Two 28-core Intel Xeon processors.
○ 192 GiB of RAM, and a single 240 GiB SSD.
○ CentOS 7.9 with the Linux kernel v3.10 and the XFS file system.
○ Lustre file system as production PFS.

● Benchmarks and workloads
○ Data workloads: IOR
○ Metadata workloads: Real traces collected from the ABCI.

- Produced a trace replayer that replicates the original traces at a smaller scale.

17

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation

● Experiments

○ Per-operation type rate limiting
Specific operation (e.g., open, close).

○ Per-operation class rate limiting
E.g., metadata, data.

○ Per-job rate limiting and QoS control
Multi-job setup with global orchestration.

18

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation

● Setups:

○ Baseline
Benchmark (IOR or trace replayer) without using PADLL.

○ PADLL
Operations intercepted by PADLL and throttled at a given rate.

Per-operation type and class rate limiting

19

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation
Per-operation type rate limiting

0
0.4
0.8
1.2
1.6
2.0

0 1 2 3 4 5Th
ro

ug
hp

ut
(G

iB
/s

)

Time (minutes)

write

0.75 1.25 1.75 2.25 0.75

0
0.5
1.0
1.5
2.0
2.5

Th
ro
ug
hp
ut

(G
iB
/s
) read

1.0 1.5 2.0 2.5 1.50
10
20
30
40
50

Th
ro
ug
hp
ut

(K
O
ps
/s
) open

20k 10k 20k 10k 5k 20k

0
15
30
45
60
75

6 12 18 24 30 36Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

close
35k 10k 30k 20k 10k 20k

0
50
100
150
200
250

Th
ro
ug
hp
ut

(K
O
ps
/s
) getattr

25k 50k 100k 50k 50k 25k

20

Protecting Metadata Servers From Harm Through Application-level I/O Control

0
10
20
30
40
50
Th
ro
ug
hp
ut

(K
O
ps
/s
) open

20k 10k 20k 10k 5k 20k

Evaluation
Per-operation type rate limiting

21

Protecting Metadata Servers From Harm Through Application-level I/O Control

0
10
20
30
40
50
Th
ro
ug
hp
ut

(K
O
ps
/s
) open

20k 10k 20k 10k 5k 20k

Evaluation
Per-operation type rate limiting

22

Protecting Metadata Servers From Harm Through Application-level I/O Control

0
10
20
30
40
50
Th
ro
ug
hp
ut

(K
O
ps
/s
) open

20k 10k 20k 10k 5k 20k

Evaluation
Per-operation type rate limiting

23

Load is higher than the
20KOps/s limit

Load is lower than the
20KOps/s limit

Operations in backlog

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation
Per-operation class rate limiting

0
50
100
150
200
250

0 6 12 18 24 30 36

Baseline
Passthrough
Padll

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

metadata
50k 100k 125k 75k 100k

50k

24

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation
Per-operation class rate limiting

0
50
100
150
200
250

0 6 12 18 24 30 36

Baseline
Passthrough
Padll

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

metadata
50k 100k 125k 75k 100k

50k

25

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation
Per-operation class rate limiting

0
50
100
150
200
250

0 6 12 18 24 30 36

Baseline
Passthrough
Padll

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

metadata
50k 100k 125k 75k 100k

50k

Overhead is negligible!

26

Operations intercepted by
PADLL, but are not rate limited

Less than 0.9% across all experiments.

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation

● Multi-job, global orchestration experiment.

● Setup:

○ There are at most four jobs in the system, each running the same workload.

○ Jobs are incrementally added to the system every 3 minutes.

○ When limiting, the PFS’s maximum metadata rate is set to 300 KOps/s.

Per-job rate limiting and QoS control

27

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation

● Setup:

○ Baseline
All jobs execute without being rate limited.

○ Static
Each job is rate limited with the same priority (75 KOps/s).

○ Priority
Each job is rate limited with a different priority (40, 60, 80 and 120 KOps/s).

○ Proportional sharing
Control algorithm that enforces per-job metadata rate reservations.

Per-job rate limiting and QoS control

28

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation
Per-job rate limiting and QoS control

0
100
200
300
400
500

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

baseline

1
2

3
4

5
6

7

0
70
140
210
280
350

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

prop. sharing

1
2

3
4

5
6

7

0
70
140
210
280
350

0 6 12 18 24 30 36 42 56

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

priority

1
2

3
4

5 6 7

0
70
140
210
280
350

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

static

1
2

3
4

5
6 7

29

Protecting Metadata Servers From Harm Through Application-level I/O Control

Evaluation
Per-job rate limiting and QoS control

0
100
200
300
400
500

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

baseline

1
2

3
4

5
6

7

30

Job1
starts

Job2
starts

Job3
starts

Job4
starts

Baseline: All jobs execute without being rate limited.

Job1
ends

Job2
ends

Job3
ends

Job4
ends

All jobs are executing

Volatile and bursty workload!

Protecting Metadata Servers From Harm Through Application-level I/O Control

75 KOps/s

0
70
140
210
280
350

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

static

1
2

3
4

5
6 7

Evaluation
Per-job rate limiting and QoS control

31

Static: Each job is rate limited with the same priority (75 KOps/s).

But, what if we want to enforce different priorities?

Sustained throughput and prevents bursty workloads!

Each job executes with a
maximum rate of 75 KOps/s

300 KOps/s 75 KOps/s

75 KOps/s
75 KOps/s

Protecting Metadata Servers From Harm Through Application-level I/O Control

0
70
140
210
280
350

0 6 12 18 24 30 36 42 56

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

priority

1
2

3
4

5 6 7

Evaluation
Per-job rate limiting and QoS control

32

Priority: Each job is rate limited with a different priority (40, 60, 80 and 120 KOps/s).

Jobs can be unnecessarily rate limited!

Jobs have different priorities!

Each job follows its maximum rate

40 KOps/s

80 KOps/s
60 KOps/s

120 KOps/s

Job 1 takes 20 minutes longer!
Aggressively rate limited!

Unused rate!

300 KOps/s

Protecting Metadata Servers From Harm Through Application-level I/O Control

0
70
140
210
280
350

0 6 12 18 24 30 36 42 46

Job4
Job3
Job2
Job1

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (minutes)

prop. sharing

1
2

3
4

5
6

7

Evaluation
Per-job rate limiting and QoS control

33

Proportional sharing: Control algorithm that enforces per-job metadata rate reservations.

Leftover rate is assigned to jobs!
Each reservation of metadata is respected!

Each job follows its maximum rate

40 KOps/s

80 KOps/s
60 KOps/s

120 KOps/s

Job 1 completes earlier!
Leftover rate is assigned to jobs!

300 KOps/s

Protecting Metadata Servers From Harm Through Application-level I/O Control

Discussion
● PADLL is able to:

○ Control the rate of I/O workflows - data, metadata - at different granularities – type, class,
per-job.

○ Prevent I/O burstiness.

○ Ensure I/O fairness and prioritization.

○ Orchestrate the storage system holistically.

Note: To prevent overloading the production PFS, all metadata workloads were submitted to the
local file system, however, IOR experiments were conducted using the PFS.

34

Protecting Metadata Servers From Harm Through Application-level I/O Control

Conclusion

● PADLL is an application and PFS-agnostic storage middleware that enables
enforcing QoS policies over workflows in HPC clusters.

● Enables system administrators to proactively and holistically control the I/O
rate of all running jobs.

● Prevent metadata-aggressive jobs from harming the PFS, as well as other jobs
in execution.

35

Protecting Metadata Servers From Harm Through Application-level I/O Control

Future Work
● Control algorithms

○ Explore other algorithms and analyze their impact in PFSs in production.

● Control plane scalability
○ The control plane is a centralized component, thus investigating its scalability and

dependability is fundamental.

● Additional experiments
○ Evaluate with large-scale I/O applications (e.g., Tensorflow) with different I/O workloads and

access patterns.

○ Evaluate the performance impact of PADLL for saturated PFSs.

36

Protecting Metadata Servers From Harm Through
Application-level I/O Control

2nd Workshop on Re-envisioning Extreme-Scale I/O for Emerging Hybrid HPC Workloads
(REX-IO’22)

September 6, 2022

Ricardo Macedo, Mariana Miranda, João Paulo
INESC TEC & University of Minho

Amit Ruhela, Stephen Lien Harrell
TACC & UTAustin

Yusuke Tanimura, Jason Haga
AIST

Richard Todd Evans
Intel

37

