
Accelerating Deep Learning Training Through
Transparent Storage Tiering

IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

May 17, 2022

1

Marco Dantas, Diogo Leitão, Peter Cui1, Ricardo Macedo, Xinlian Liu2, Weijia Xu1, João Paulo

INESC TEC & University of Minho 1 University of Texas at Austin 2 Hood College

Accelerating Deep Learning Training Through Transparent Storage Tiering

DL and HPC Convergence

● Deep Learning (DL)

○ New models and predictions for

■ Healthcare, finance, natural sciences, …

○ Computational demanding workloads

○ Large datasets

● DL workloads can leverage the computational power offered by HPC!

● Is the same true for HPC’s storage resources?

2

Accelerating Deep Learning Training Through Transparent Storage Tiering

DL Model Training

● From the Storage I/O perspective

○ Datasets composed by millions of small files (order of KiBs)

■ Optimized data formats (order of MiBs)
e.g., TFRecord

○ Read-oriented workload

○ Trained model’s accuracy

■ Epochs: Full dataset is read at each training epoch

3

1st training epoch

Accelerating Deep Learning Training Through Transparent Storage Tiering

DL Model Training

● From the Storage I/O perspective

○ Datasets composed by millions of small files (order of KiBs)

■ Optimized data formats (order of MiBs)
e.g., TFRecord

○ Read-oriented workload

○ Trained model’s accuracy

■ Epochs: Full dataset is read at each training epoch

■ Shuffling: Random I/O accesses across epochs

4

2nd training epoch

Accelerating Deep Learning Training Through Transparent Storage Tiering

The Storage Bottleneck Problem

● ”Bad” data-centric I/O workloads

○ Metadata-intensive due to small files

○ Hard to cache due to random accesses

● Parallel File System (PFS)

○ Competition for shared storage resources

○ Can lead to performance variability or even unavailability!

5

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
5

10
15
20
25

Lustre
LocalTr

ai
ni

ng
 ti

m
e

(m
in

) LeNet AlexNet

0
5

10
15
20
25

Lustre
Local

Solution: Use Local Storage?
● Caching data at compute node’s local storage

○ Reduces I/O pressure at the PFS

○ Improves DL training speed for I/O-bound workloads

6

-48%
-20%

Average training time (3 epochs) for LeNet and AlexNet models with the
ImageNet dataset (100 GiB) being read from Lustre and Local disk

Accelerating Deep Learning Training Through Transparent Storage Tiering

Challenges
● Users may not be aware of local disks

● Manually copying data to the local disk is challenging

○ The dataset may not fit entirely at the local disk

● The solution must be portable for different DL frameworks

○ Non-intrusive - i.e., avoids changing the framework’s source-code

○ Tuned for DL I/O workloads

7

Accelerating Deep Learning Training Through Transparent Storage Tiering

Contributions
● Monarch

○ Transparent and portable storage tiering optimized for DL workloads

○ Compatible with I/O optimizations implemented at existing DL frameworks

■ Caching, sample-based prefetching, optimized data formats

● Prototype and experimental validation

○ Integration with PyTorch and TensorFlow, without any code changes

○ Experimental validation with different dataset sizes and DL models

8

Accelerating Deep Learning Training Through Transparent Storage Tiering 9

Monarch

1LD_PRELOAD is used for intercepting POSIX calls

1

Accelerating Deep Learning Training Through Transparent Storage Tiering 10

Storage Hierarchy
● Layered design (L1 to N)

○ L1 to N-1: data caching

○ LN: full dataset (read-only)

○ Organized by different criteria
(e.g., performance, energy)

● Each layer includes

○ Storage driver – modular plugin
abstracting different backends

○ Storage quota – tracks available
storage space

LN L1

Accelerating Deep Learning Training Through Transparent Storage Tiering 11

Placement Handler
● Placement policy

○ Defines the data to be cached and
evicted at layers L1 to N-1

○ Monarch’s placement strategy

■ Top layers are filled first
(i.e., until their quota is reached)

■ No eviction policy

● Thread pool

○ Background data fetching and caching

○ Prefetching for large files (e.g., TFRecords)

The full dataset is read
for each training epoch!

Leverage local
storage resources!

Accelerating Deep Learning Training Through Transparent Storage Tiering 12

Metadata Container
● Enables transparent tiering

● Unified logical view of storage
resources for DL frameworks

○ Avoids modifying existing frameworks

● Translation of logical to physical
storage resources

○ File paths and descriptors

Unified logical view

Physical resources

Accelerating Deep Learning Training Through Transparent Storage Tiering 13

Flow of I/O Requests

Accelerating Deep Learning Training Through Transparent Storage Tiering 14

Data is Stored at LN

(b) File’s content is at LN
(i.e., PFS)

(a) Check file’s location

Accelerating Deep Learning Training Through Transparent Storage Tiering 15

Background Data Placement

(a) Check L1 storage quota
No eviction policy

Accelerating Deep Learning Training Through Transparent Storage Tiering 16

Background Data Placement

(a) Check L1 storage quota
No eviction policy

(b) Prefetch file’s content from LN to L1
(i.e., from PFS to local FS)

Accelerating Deep Learning Training Through Transparent Storage Tiering 17

Background Data Placement

(a) Check L1 storage quota
No eviction policy

(b) Prefetch file’s content from LN to L1
(i.e., from PFS to local FS)

(c) Update metadata

Accelerating Deep Learning Training Through Transparent Storage Tiering 18

Subsequent I/O Requests

File’s content is now at L1
(i.e., Local FS)

Accelerating Deep Learning Training Through Transparent Storage Tiering 19

Next Epoch - Data is Cached at L1

(a) Check file’s location

(b) File’s content is read from L1
(i.e., Local FS)

Accelerating Deep Learning Training Through Transparent Storage Tiering

Experimental Evaluation
● Frontera compute node with 2x 16-core Intel Xeon processors, 4x

Nvidia Quadro, 68 GiB of RAM, and a 119 GiB SSD disk partition1

● Dataset, workloads and setups2

○ ImageNet-1 dataset with 200 GiB (TFRecords)

○ LeNet, AlexNet (I/O-bound) and ResNet-50 (compute-bound) models

○ TensorFlow and PyTorch + DALI (caching and prefetching enabled)

■ Lustre: data is read from the PFS (without using Monarch)

■ Monarch: storage tiering (local disk + PFS) is enabled by Monarch

20

1 RAM and disk space were limited to ensure that the 200 GiB ImageNet-1 dataset cannot be fully cached
2 Results for other dataset sizes, workloads and setups can be checked at the paper

Accelerating Deep Learning Training Through Transparent Storage Tiering

TensorFlow - 200GiB Dataset

21

Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

Accelerating Deep Learning Training Through Transparent Storage Tiering

TensorFlow - 200GiB Dataset

22

Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

-28% -21%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)

Accelerating Deep Learning Training Through Transparent Storage Tiering

TensorFlow - 200GiB Dataset

23

Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

-28% -21%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
1500
3000
4500
6000

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet500
200
400
600
800

5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

TensorFlow - 200GiB Dataset

24

Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28% -21%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

1st epoch 2nd epoch 3rd epoch

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
1500
3000
4500
6000

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet500
200
400
600
800

5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

TensorFlow - 200GiB Dataset

25

Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching

(better usage of the local page cache)

(1)

1st epoch 2nd epoch 3rd epoch

-21%

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
1500
3000
4500
6000

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet500
200
400
600
800

5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

TensorFlow - 200GiB Dataset

26

Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching

(better usage of the local page cache)
2. Similar performance when the page cache becomes full

(1) (2)

1st epoch 2nd epoch 3rd epoch

-21%

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
1500
3000
4500
6000

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet500
200
400
600
800

5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

TensorFlow - 200GiB Dataset

27

Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching

(better usage of the local page cache)
2. Similar performance when the page cache becomes full
3. Better performance for the second and third training epochs

(1) (2)
(3)

1st epoch 2nd epoch 3rd epoch

-21%

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
1500
3000
4500
6000

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet500
200
400
600
800

5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

TensorFlow - 200GiB Dataset

28

Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching

(better usage of the local page cache)
2. Similar performance when the page cache becomes full
3. Better performance for the second and third training epochs

For ResNet50:
• Similar throughput but less variance

1st epoch 2nd epoch 3rd epoch

-21%

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
3
6
9

12

Ac
cu

m
ul

at
ed

 O
ps

 (x
10

3)

Step

Lustre Monarch
LeNet

AlexNet

ResNet50
0
3
6
9

12

LeNet

AlexNet

ResNet50

0
3
6
9

12

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

29

PFS’s read operations by Lustre and Monarch PFS’s metadata (open + close) operations by Lustre and Monarch

TensorFlow - 200GiB Dataset

1st epoch 2nd epoch 3rd epoch 1st epoch 2nd epoch 3rd epoch

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
3
6
9

12

Ac
cu

m
ul

at
ed

 O
ps

 (x
10

3)

Step

Lustre Monarch
LeNet

AlexNet

ResNet50
0
3
6
9

12

LeNet

AlexNet

ResNet50

0
3
6
9

12

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

30

PFS’s read operations by Lustre and Monarch PFS’s metadata (open + close) operations by Lustre and Monarch

TensorFlow - 200GiB Dataset

1st epoch 2nd epoch 3rd epoch 1st epoch 2nd epoch 3rd epoch

With Monarch:
1. PFS read operations reduced by up to 56%
2. Prefetching reduces number of reads at first epoch

-50%

-56%

-56%

(2)

(1)

Accelerating Deep Learning Training Through Transparent Storage Tiering

0
3
6
9

12

Ac
cu

m
ul

at
ed

 O
ps

 (x
10

3)

Step

Lustre Monarch
LeNet

AlexNet

ResNet50
0
3
6
9

12

LeNet

AlexNet

ResNet50

0
3
6
9

12

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

31

PFS’s read operations by Lustre and Monarch PFS’s metadata (open + close) operations by Lustre and Monarch

TensorFlow - 200GiB Dataset

1st epoch 2nd epoch 3rd epoch 1st epoch 2nd epoch 3rd epoch

With Monarch:
1. PFS read operations reduced by up to 56%
2. Prefetching reduces number of reads at first epoch

With Monarch:
1. PFS open + close operations reduced by up to 38%
2. Same number of operations for the first training epoch

-50%

-56%

-56%

(2)

(1)

-38%

-38%

-38%

(2)

(1)

Accelerating Deep Learning Training Through Transparent Storage Tiering 32

PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

Accelerating Deep Learning Training Through Transparent Storage Tiering 33

PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

1. In 48 hours, Lustre runs 48 epochs and achieves 37% and 61% for top-1 and top-5 accuracy

(1)

61%

37%

Accelerating Deep Learning Training Through Transparent Storage Tiering 34

PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

1. In 48 hours, Lustre runs 48 epochs and achieves 37% and 61% for top-1 and top-5 accuracy
2. Monarch completes the same number of epochs (48) and achieves similar accuracy in 28 hours

(1)

61%

37%

(2)

63%

38%

Accelerating Deep Learning Training Through Transparent Storage Tiering 35

PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

1. In 48 hours, Lustre runs 48 epochs and achieves 37% and 61% for top-1 and top-5 accuracy
2. Monarch completes the same number of epochs (48) and achieves similar accuracy in 28 hours
3. In 48 hours, Monarch runs 81 epochs and achieves 51% and 75% for top-1 and top-5 accuracy

(1)

61%

37%

(2)

63%

38%

(3)

75%

51%

Accelerating Deep Learning Training Through Transparent Storage Tiering

Conclusions
● Monarch, storage tiering for DL workloads running on HPC centers

○ Transparent to users

○ Applicable to different DL frameworks

○ Optimized for DL I/O patterns and large datasets

● TensorFlow and PyTorch training time reduced by up to 28% and 37%

● Number of I/O operations at the PFS reduced by up to 56%

● Open-sourced at https://github.com/dsrhaslab/monarch

36

https://github.com/dsrhaslab/monarch

Accelerating Deep Learning Training Through
Transparent Storage Tiering

IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

May 17, 2022

37

Marco Dantas, Diogo Leitão, Peter Cui1, Ricardo Macedo, Xinlian Liu2, Weijia Xu1, João Paulo

INESC TEC & University of Minho 1 University of Texas at Austin 2 Hood College

