SOTERIA: Preserving Privacy in Distributed
Machine Learning

Claudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, and Joao Paulo

Abstract—We propose SOTERIA, a system for distributed privacy-preserving Machine Learning (ML) that leverages Trusted Execution
Environments (e.g. Intel SGX) to run code in isolated containers (enclaves). Unlike previous work, where all ML-related computation is
performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The
conducted experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%, when compared to
previous related work. Our protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide

spectrum of ML attacks.

Index Terms—Privacy-preserving, Machine Learning, Apache Spark, SGX, Outsourcing

1 INTRODUCTION

Outsourcing Machine Learning (ML) data storage and com-
putation to third-party services (e.g., cloud computing)
leaves users vulnerable to attacks that may compromise
the integrity and confidentiality of their data. Indeed, the
ML pipeline encompasses several stages, both for model
training and inference, in which users’ data is known to
be susceptible to different attacks such as adversarial attacks,
model extraction, and inversion, and reconstruction attacks [1],
(2].

Recent works have addressed these attacks with solu-
tions based on homomorphic encryption or secure multi-
party computation schemes. However, these cryptographic
schemes impose a significant performance toll that restricts
their applicability to practical scenarios [3]. To circumvent
this performance penalty, another line of research is that
of exploring hardware technologies enabling Trusted Exe-
cution Environments (TEEs), such as Intel SGX [4]. These
technologies allow the execution of code within isolated
processing environments (i.e., enclaves) where data can
be securely handled in its original form (i.e., plaintext) at
untrusted servers.

The latter approach typically deploys full ML workloads
inside TEEs [5], [6]. However, as the amount of computa-
tional and I/O operations performed at the enclaves in-
creases, the performance of ML training and inference is
noticeably affected by hardware limitations, limiting the
design’s applicability in practice [7].

e C. Brito, R. Oliveira and]. Paulo are with INESC TEC & University
of Minho. E-mail: claudia.v.brito@inesctec.pt, joao.t.paulo@inesctec.pt,
remo@inesctec.pt

e P Ferreira and B. Portela are with INESC TEC & Fac-
ulty of Sciences, University of Porto.E-mail: pferreira@ipatimup.pt,
bernardo.portela@fc.up.pt.

This is the author’s version. This work has been accepted at The 38th
ACM/SIGAPP Symposium On Applied Computing (SAC’23). Copyright
may be transferred without notice, after which this version may no longer
be accessible.

This paper builds upon the idea that ML runtime per-
formance could be improved by reducing the number of
operations done at enclaves. In fact, this insight is backed up
by previous work [8], [9] exploring the partitioning of com-
putation across trusted and untrusted environments, but
in contexts (e.g., SQL processing, MapReduce, distributed
coordination) with different security requirements and pro-
cessing logic than the ones found for ML workloads.

Therefore, the key challenge addressed by this paper
is to understand and define the set of ML operations to
run inside/outside TEEs. Ideally, these operations should
significantly reduce the enclaves’ overall computational and
I/0 load for different ML workloads; and doing so should
not leak critical sensitive information during the execution
of ML workloads.

Our reasoning is twofold: i.) the majority of current
attacks on the ML pipeline is only successful if the attacker
has some knowledge about the datasets and/or models
being used [2], [10]; and ii.) studies show that such knowl-
edge cannot be inferred from the information leaked by
statistical operations, such as the calculation of confidence
results, table summaries, ROC/AUC curves, and probability
distributions for classes [11]. As a result, these operations are
ideal candidates to be offloaded from enclaves. We support
these claims by analyzing the security and performance
implications of different ML workloads and attacks.

Thus, we propose SOTERIA, an open-source system for
distributed privacy-preserving ML (https://github.com/
claudiavmbrito/soteria) that leverages the scalability and
reliability provided by Apache Spark and its ML library
(MLIib). Unlike previous solutions [12], [13], SOTERIA sup-
ports a wide variety of ML algorithms without changing
how users build and run these within Spark. It ensures that
critical operations, which enable existing attacks to reveal
sensitive information from ML datasets and models, are
exclusively performed in secure enclaves. This means that
the sensitive information being processed only exists in
plaintext when inside the enclave, being encrypted in the
remainder data flow (e.g., network, storage). This solution

https://github.com/claudiavmbrito/soteria
https://github.com/claudiavmbrito/soteria

enables robust security guarantees, ensuring data privacy
during ML training and inference.

SOTERIA introduces a new computation partitioning
scheme for Apache Spark’s MLIlib, , that offloads non-critical
statistical operations from the trusted enclaves to untrusted
environments. is accompanied by a formal security proof
for how data remains private during ML workloads and
an analysis of how this guarantee ensures resilience against
various ML attacks. Furthermore, SOTERIA offers a baseline
scheme, , where all ML operations are done inside trusted
enclaves without a fine-grained differentiation between crit-
ical and non-critical operations. provides a performance
and security baseline for comparison against our new parti-
tioned scheme.

We compare experimentally both approaches with a
non-secure deployment of Apache Spark and a state-of-
the-art solution, namely SGX-Spark [12]. Our experiments,
resorting to the HiBench benchmark [14] and including four
different ML algorithms, show that , while considering a
larger subset of ML attacks, reduces training time by up
to 41% for Gradient Boosted Trees workloads and up to
4.3 hours for Linear Regression workloads, when compared
to SGX-Spark. Also, when compared to , reduces execution
time by up to 37% for the Gradient Boosted Trees workloads
and up to 3.3 hours for the Linear Regression workloads.

2 BACKGROUND
2.1 Apache Spark and MLIib

Apache Spark is a distributed cluster computing framework
that supports ETL, analytical, ML, and graph processing
over large volumes of data. Spark follows a Master / Workers
distributed architecture and can be deployed on a cluster of
servers in the cloud that may access several data sources
(e.g., HBase, HDFS) for reading the data to be processed and
storing the corresponding output and logs [15]. Spark is able
to perform most of the computation in-memory, thus pro-
moting better performance for data-intensive applications
when compared to Hadoop’s MapReduce.

The MLIib library [16] enables Spark users to build end-
to-end ML workflows. These workflows are divided into 5
stages (Figure 1). The first stage goes from the collection
of data to its treatment. In the second stage, data is split
into train and test datasets, and a given ML algorithm is
chosen. The third stage is the training stage, where data is
iterated to deliver an optimized trained model at the fourth
stage. In the fifth stage, the trained model can then be saved
(persisted) and loaded (accessed) for inference purposes.

2.2

Intel SGX provides a set of new instructions, available on
Intel processors, that applications can use to create trusted
memory regions. These regions (enclaves) are isolated from
any other code on the host system, preventing other pro-
cesses, including those with higher privilege levels (such
as the host OS, hypervisor, and BIOS), from accessing their
content [4], [17].

Since SGX protects code and data from privileged access,
sensitive plaintext data can be processed at the enclave
without compromising its privacy. Thus, TEEs outperform

Intel Software Guard Extensions

Trusted Site . Untrusted Site

: . Model
Data Source : Data Treatment Training Dataset ode Trained Model Inference

ERCRT

Reconstruction Attacks M10d¢! EXtraction Membership Inference
Model Inversion

C e Be Be Je]
RS RS RS RS RS

1st stage

((C0

Adversarial Samples

2nd stage 3rd stage 4th stage 5th stage

Fig. 1: ML pipeline and known attack vectors.

typical traditional cryptographic computational techniques
(e.g., searchable encryption, homomorphic encryption) [17].
Even though the second generation of SGX has improved
the size of the protected memory region, it still defines the
Enclave Page Cache (EPC) to 128MB per CPU [?]. When
such limitation is met, memory swapping occurs, which
is a performance-costing mechanism [7]. Thus, SGX-based
solutions must balance the number of I/O operations and
the amount of data handled by enclaves as well as the
Trusted Computing Base (TCB) to optimize performance.

We chose SGX over other TEEs in this paper because
of its broad availability and use in academia [8], [9] and
industry [18].

3 APPLICATIONS AND SECURITY MODEL
3.1 SOTERIA Threat Model

SOTERIA enables the secure outsourcing of ML training and
inference workloads. These are scenarios where the data
owner holds sensitive information (a private dataset and/or
model) and wants to perform some ML workload on it using
an external cloud provider.

Our deployment model is depicted in Figure 2 and is as
follows. The client (data owner) will be trusted and will
provide input for ML tasks Then, a Spark Master node
and N Worker nodes will be deployed in an untrusted
environment (cloud provider), equipped with Intel SGX
technology. Externally, we also consider a distributed data
storage backend. The protocol assumes an implicit setup
where the client stores its input data securely within this
backend, which is also considered untrusted throughout the
protocol execution.

We consider semi-honest adversaries, which means that
security is defined according to a threat that attempts to
break the confidentiality of data and model, but that will
not actively deviate from the protocol specification. This is
a good fit for cloud-based systems, where data breaches are
common and malicious entities can read internal processing
data temporarily [19]. In brief, our security goal is to allow
clients to provide input data for training and inference in a
way that is not vulnerable to breaches in confidentiality.

3.2 ML Workflow Attacks

Throughout the paper, we will follow the black-box setting
of [?]. Essentially, when we state that an adversary has black-
box access to a model, it means it can query any input « and
receive the predicted class probabilities P(y|z) for all classes
y. This allows the adversary to interact with the trained
model without retrieving additional information, e.g. com-
puting the gradients. Ensuring security against attacks on

TABLE 1: Comparison between state-of-the-art solutions
and SOTERIA regarding the safety against ML attacks.

Systems

Attacks 5] [6] (3] [12]° SoTeria
Gradient-based X X / X v
Adversarial Score-based X x v X v
Transfer-based X X X 4
Decision-based X X X v
Equation-solving v v X v 4
. Path-findin v /X X v
Model Extraction Class-onlyg v v x X v
DFKD v /X v v
Model Inversion v / v v
Reconstruction Attacks v v/ v v
Membership Inference X x X X v

*Data encryption is not provided on the open-source version.
v - Protected; X - Non-protected; ? - Not disclosed.

this pipeline entails including countermeasures against a
wide array of attack vectors, as depicted in Figure 1.
Adversarial attacks. These attacks are characterized by the
injection of malicious data samples, to manipulate the model
and to disclose information about the original data being
used for training or inference purposes. Successful attacks
in the literature require the attacker to have direct access
to the training dataset (data poisoning, transfer-based, and
gradient-based attacks), the model and gradients (gradient-
based attacks), or the full results and class probabilities
(score-based attacks) [10], [20].

Model Extraction. These attacks aim at learning a close
approximation to an objective function of the trained model.
This approximation is based on the exact confidence val-
ues and response labels obtained by inference. To attain
the desired output, the attacker must know the dimension
of the original training dataset (equation-solving attacks),
the dimension of the decision trees, data features and the
final confidence values (path-finding attacks), or hold real
samples from the training dataset (class-only attacks and
data-free knowledge distillation (DFKD)) [1], [21].

Model Inversion and Membership Inference. These attacks
target the recovery of values from the training dataset. Both
consider an adversary that queries the ML system in a black-
box fashion and both are currently based on ML services,
which define publicly their trained models and the confi-
dence values. In model inversion, the adversary must have
partial knowledge of the training dataset’s features to infer
and query the model with specific queries [2]. Membership
inference aims to test if a specific data point d was used as
training data and requires the adversary to know a subset of
samples used for training the model (that does not contain
d) [22].

Reconstruction attacks. The goal of this attack is similar to
that of membership inference, but instead of testing for the
existence of a specific data point, the adversary intends to
reconstruct raw data used for training the model. To be suc-
cessful, some attacks require the adversary to have model-
specific information, namely feature vectors (e.g., Support
Vector Machines or K-Nearest Neighbor) [23], others only
require black-box access to the model [24].

Summary. Unlike previous works [5], [6], [12], [13], which
typically consider a small subset of ML attacks, our proposal
aims at providing mechanisms that cover the full range
of the above-mentioned exploits. Table 1 presents relevant

3

state-of-the-art solutions, the security attacks covered by
these, and the attacks addressed by SOTERIA. Intuitively, the
resilience of our system is the result of combining several
mechanisms, which are only partially ensured by other
systems: i.) authenticity verification of inputs excludes injec-
tions necessary for adversarial attacks; ii.) isolation guarantees
of our protocol ensure that malicious workers gather no
additional information other than statistical data, an essen-
tial aspect for preventing most attacks, and iii.) query input
via secure channel prevents the adversary from performing
arbitrary queries to our system, which is also a central
requirement for model inversion or reconstruction attacks. This
is analysed in detail in Section 4.5.

TEE-related security issues such as side-channel and mem-
ory access pattern attacks are considered orthogonal and com-
plementary to our design goals. Indeed, mechanisms such
as ObliviousRAM [25] can be layered over Soteria to address
these, at the cost of additional performance overhead.

4 SOTERIA

SOTERIA is a privacy-preserving ML solution that avoids
changing Apache Spark’s main architecture and processing
flow while retaining its usability, scalability, and fault toler-
ance properties.

4.1 Apache Spark: Architecture and Flow

As depicted in Figure 2, Apache Spark’s operational flow is
as follows. Before submitting ML tasks (e.g., model training,
and/or inference operations) to the Spark cluster, users must
load their local datasets and models to a distributed stor-
age backend. Users can then submit ML processing tasks,
specified as ML task scripts, to the Spark client, which is
responsible for forwarding these scripts to the Master node.
At the Master node, tasks are forwarded to the Spark Driver,
which generates a Spark Context that then distributes the
tasks to a set of Worker nodes.

As Workers may be executing different steps of a given
task, they need to be able to transfer information (e.g., model
parameters) among each other through the network. After
finishing the desired computational steps, Workers send
back their outputs to the Master node, which merges the
outputs and replies back to the client.

Similar to the regular flow of Apache Spark, SOTERIA
can be divided into two main environments or sides: the
SOTERIA Client, trusted side, and the SOTERIA Cluster,
untrusted side, (e.g., cloud environment). Next, we describe
the main modifications required by SOTERIA to the original
Apache Spark’s design, depicted in Figure 2 by the white
dashed and solid line boxes.

4.2 SOTERIA Client

SOTERIA’s client module is used by users for three main
operations: i) loading data into the distributed storage back-
end, ii) sending ML training tasks to the Spark cluster,
and iii) sending ML inference tasks to the Spark cluster.
SOTERIA does not change the way users typically specify
and perform the previous operations. The only exception
is that users need to provide additional information in a
Manifest configuration file, as described next.

Trusted Side

: Untrusted Side

' ‘Worker 1

=
]
Spark Driver S Tasks %
3 "
Spark Context || " @ i DaislCoading@ll| =
' =

[Encryption Module]

P Al

—
Distributed
Data
St
(b)) storage

--
l:l Vanilla Apache Spark ! | Enclave D New Components

Data Loading

Encryption Module

Fig. 2: SOTERIA architecture and operations flow.

Data Loading. For the first operation, the user must specify
the data to be loaded to the storage backend. However,
such data has to be encrypted before leaving the trusted
user premises. This step is done by extending Spark’s data
loading component with a transparent encryption module
(Figure 2-@), This module encrypts the data being loaded
into the distributed storage backend with a symmetric-key
encryption scheme (Figure 2-®).

Tasks submission. ML training and inference operations in-
clude two main files: the ML task script and the Manifest file.
The transparent encryption module, also integrated within
MLIib, is used to encrypt the ML task script (Figure 2-@),
which contains sensitive arguments (i., model parameters)
and the ML’s workload processing logic, and to decrypt the
outputs (e.g., trained model or inference result) returned by
Spark’s Master node to the client.

The Manifest file contains the libraries to be used by the
ML task script, as well as the path at the storage backend
where the training or inference data, for that specific task,
is kept (Figure 2-@). Briefly, and as explained in the next
sections, this file ensures that different Spark components
can attest the integrity of libraries and data being used /read
by them and, moreover, cannot access other libraries or data
that these are not supposed to.

The encryption module is in charge of securely exchang-
ing the Manifest file, and the user’s symmetric encryption
key with the SGX enclave on the Master node (Figure 2-
@@®). This is done once, at the ML task’s bootstrapping
phase, and requires establishing a secure channel between
the client and Master’s enclave. This channel guarantees the
security and integrity of the user’s encryption key and the
Manifest file, while the encrypted ML task scripts can be
safely sent via an unprotected channel.

With the previous design, sensitive data is only accessed
in its plaintext format at trusted user premises or inside
trusted enclaves. This includes users’ encryption keys, the
information in the Manifest file and ML task scripts, as well
as the final output.

4.3 SOTERIA Cluster

Training and inference ML task scripts are sent encrypted
to Spark’s Master node to avoid revealing sensitive infor-
mation. However, the node requires access to the plaintext
information contained in these cryptograms to distribute the
required computational load across Workers. So, the Spark
Driver and Context modules must be deployed in a secure
SGX enclave where the cryptograms can be decrypted and

4

the plaintext information can be securely accessed. The
cryptograms, however, can only be decrypted if the secure
enclave has access to the user’s encryption key, thus ex-
plaining why the key must be sent through a secure channel
established between the client module and the enclave.

For inference operations, the Master node also needs to
access the distributed storage backend to retrieve the stored
ML model. The user’s encryption key is necessary so that
the encrypted model is only decrypted and processed at
the secure enclave. The Manifest file ensures that only the
storage locations specified in the file are accessible to the
Master Node (Figure 2-@).

After processing the ML task scripts, the Master’s en-
clave establishes secure channels with the enclaves of a set
of Workers to send the necessary computational instruc-
tions! along with the user’s encryption key and Manifest
file (Figure 2-@). The user’s encryption key is needed at
the Worker nodes so that these can read encrypted data
(e.g., train dataset or data to be inferred) from the storage
backend while decrypting and processing it in a secure
enclave environment (Figure 2-@). The Manifest file is used,
once again, to prevent unwanted access to stored data.
Furthermore, the enclaves at the worker nodes establish
secure channels between themselves to transfer sensitive
metadata information such as model training parameters
(Figure 2-@).

Finally, after completing the desired computational
tasks, the Workers send the corresponding inference or
training outputs to the Master node, through the established
secure channel (Figure 2-@). The Master node then merges
the partial outputs into the final result and sends it en-
crypted, with the user’s encryption key, to the trusted client
module (Figure 2-@). At the latter, the result (i.e., trained
model or inference output) is decrypted by the transparent
encryption module and returned to the user in plaintext.

4.4 SOTERIA Design

SOTERIA proposes a novel partitioning scheme, , that does
fine-grained partitioning of which operations execute inside
and outside secure enclaves. Note that this partitioning is
only done for ML operations executed at Spark Worker
nodes. The remaining operations done at other Spark com-
ponents (i.e., Master) are always executed inside trusted
enclaves.

To better understand the novelty of our partitioning
scheme, we first introduce a common state-of-the-art ap-
proach, , which is also supported by our system and is used
in this paper as a security and performance baseline.
SOTERIA Baseline (). In , all computation done by Spark
Workers is included in a trusted environment. The executor
processes launched by each Worker node are deployed in-
side an enclave, as depicted in Figure 3. Outside the enclave,
data is always encrypted in an authenticated fashion, which
allows the Worker to decrypt and validate data integrity
within the enclave.

SOTERIA Partitioning Scheme (). Our novel scheme is
based on the observation that ML workloads are composed
of different computational steps. Some must operate directly

1. The same metadata sent by a vanilla Spark deployment so that
Workers know the computational operations to perform.

Baseline Partitioned

T Worker N~ [Worker N
() 3

i 5 Tasks ; ! ‘E Task : B
:‘é S % ! 1 g |LML Algorithms % | £[Task %
' ata Loadin 2 —
|2 . g S 1% | DataLoading | & v | Statisties || 5
H s Encryption Module ' A " ! =
! : ' 8 Encryption Module :
____________________ N e

1 Enclave D New Components
Fig. 3: Comparison between and schemes.

over sensitive plaintext information (e.g., train and inference
data and model), while others do not require access to this
type of data and are just calculating and collecting general
statistics about the operations being made. For instance, in
a multiclass ML task, where the user may want to predict
multiple classes, the evaluation of such an algorithm would
need to measure the precision and the probability of each
individual class. These measurements can be performed in-
dependently of other operations over sensitive information.

Therefore, decouples statistical processing, used for as-
sessing the performance of inference and training tasks,
from the actual computation of the ML algorithms done
over sensitive plaintext information. This decoupling builds
directly upon MLIib and refactors its implementation with-
out requiring any changes to the way users submit ML tasks.
As depicted in Figure 3, statistical processing is done by
executor processes in the untrusted environment, while the
remaining processing endeavors are done by another set of
executors inside a trusted enclave.

This decoupled scheme leads to reveal the following sta-
tistical information during the execution of ML workloads:
the calculation of confidence results (accuracy, precision, re-
call and F1-scores), table summaries and ROC/AUC curves,
and probability distributions for classes.

4.5 Security

Formally, our security goal is defined using the real-versus-
ideal world paradigm, similarly to the Universal Compos-
ability [26] framework. Succinctly, we prove that SOTERIA
is indistinguishable from an idealized service for running
ML scripts in an arbitrary external environment that can
collude with a malicious insider adversary. We then use
that abstraction to demonstrate how SOTERIA is resilient
to real-world ML attacks. This idealized service is specified
as a functionality parametrized with the input data, which
simply executes the tasks described in the ML task script,
and returns the output to the client via a secure channel.

The full proof of SOTERIA can be found in part A of
[?]. The outline is as follows. The role played by SOTERIA
’s Master node can be seen as an extension of the client,
establishing secure channels, providing storage encryption
keys, and receiving outputs. We follow the reasoning of [27]
and replace the Master node with a reactive functionality
performing the same tasks. Similarly, each SOTERIA Worker
behaves simultaneously as a processing node and as a client
node, providing inputs to the computation of other Workers
(e.g., model training parameters). This enables us to do
a hybrid argument, where Worker nodes are sequentially
replaced by idealized reactive functionalities executing their
roles in the task script.

5

Finally, all processing is done in ideal functionalities, and
all access to external storage is fixed by the ML task script
and the Manifest file, so we can refactor the functionalities
to process over hard-coded client data, and replace the
secure data storage with dummy encryptions. We have now
reached the ideal world, where all ML computation is done
in an isolated service, and all other protocol interactions are
simulated given the ML task script and Manifest files. Our
analysis refers to , and thus establishes the baseline security
result when no computation is done outside the enclave (no
leakage). The reasoning for is identical, with the caveat that
statistical data is explicitly revealed as leakage in the ideal
world.

4.5.1 Security implications of statistical leakage

To show that our system is resilient against ML attacks, we
must consider a common prerequisite for such attacks to
be successful: the adversary must have black-box access to
the model (Section 3.2). Our result implies that adversaries
cannot infer internal data from the workers, and the secure
channel between client and Master prevents adversaries
from injecting queries into the system. This would intu-
itively suggest that our adversary is unable to perform
queries in a black-box fashion to the model, however, has the
aforementioned additional leakage of statistical information.

As such, a crucial security question to answer is: how
does statistical information relate to black-box model access, i.e.
does the first imply the second in any way? Extracting model
access from statistical data is an ongoing area of research.
However, current attacks suggest one is unable to do this
in any successful way [11]. This supports our thesis that
statistical values are not sensitive information, in the sense that
their leakage does not expose our system to these types of
attacks. It follows that scheme is resilient to any attack that
requires black-box access to the model to succeed.

4.5.2 Relation to ML Attacks

We now overview the four types of attacks referred to in
Section 3.2 on a case-by-case basis. Part B of [?] contains a
more in-depth analysis of these attacks.

Resistance against input forgery is achieved by SOTERIA
through authenticated data encryption. This means that the
input dataset is authenticated by the data owner and ex-
plicitly defined in the Manifest file, allowing enclave Worker
nodes to check the authenticity of all input data. Thus, no
forged data is accepted for processing, which is necessary
for performing any type of adversarial attack.

The secure channels between the TEE at the Master node
and the client ensure that an external adversary cannot
observe legitimate query input/outputs, and cannot submit
arbitrary queries to SOTERIA. This query privacy feature is
crucial to block illegitimate model access, which allows us to
protect against model extraction, model inversion, membership
inference as well as instances of reconstruction attacks that
require black-box access to the model.

Finally, reconstruction attacks require additional knowl-
edge about internal ML model data. Our security result
shows that SOTERIA is indistinguishable from an idealized
ML service, which does not reveal the trained model. This
includes the important feature vectors required for this

attack to occur, which also cannot be inferred from con-
fidence values and class probabilities alone. Alternatively,
reconstruction attacks requiring black-box access to the model
are strictly stronger, but this, as we have argued, is not
possible only with knowledge of confidence values, class
probabilities, ROC/AUC curves, and table summaries (the
explicit leakage of) [?].

4.6

SOTERIA’s prototype is built on top of Apache Spark 2.3.0
and implemented using both Java and Scala. Spark’s data
loading library was extended to include SOTERIA’s trans-
parent encryption module. The latter uses the AES-GCM-
128 authenticated encryption cypher mode, which provides
both data privacy and integrity guarantees.

Both and schemes are supported by our prototype. For
‘s implementation, Spark’s MLIlib implementation was de-
coupled into two sub-libraries, one with the statistical pro-
cessing (to be executed outside SGX), and another with the
remaining ML computational logic (to be executed inside
SGX).

Graphene-SGX 1.0 was used for the overall management
of Intel SGX enclaves’ life cycle, for specifying the com-
putation (i.e., internal Spark and MLIib libraries) to run at
each enclave, and for establishing secure channels (i.e., with
the TLS-PSK protocol) between the enclaves at the Master
and Worker nodes [28]. SOTERIA’s Manifest file was also
provided by Graphene.

Implementation

5 METHODOLOGY

Environment. The experiments use a cluster with eight
servers, with a 6-core 3.00 GHz Intel Core i5-9500 CPU,
16 GB RAM, and a 256GB NVMe. The host OS is Ubuntu
18.04.4 LTS, with Linux kernel 4.15.0. Each machine uses
a 10Gbps Ethernet card connected to a dedicated local
network. We use Apache Spark 2.3.0 and version 2.6 of
the Intel SGX Linux SDK (driver 1.8). The client and Spark
Master run in one server while Spark Workers are deployed
in the remaining seven servers. SGX memory is configured
to use 4GB.

Workloads. We resort to the HiBench benchmark [14] for
evaluating four ML algorithms (Table 3), that are broadly
used and natively implemented on top of MLIib, namely:
Alternating Least Squares (ALS), Principal Component
Analysis (PCA), Gradient Boosted Trees (GBT) and Linear
Regression (LR). For each algorithm, the benchmark suite
offers different workload sizes ranging from Tiny to Gigantic
configurations.

Setups and metrics. To validate SOTERIA’s performance,
and the benefits of fine-grained differentiation of secure ML
operations, we compare the implementations of our system
with the and schemes. These setups are compared with a
deployment of Apache Spark that does not offer privacy
guarantees (Vanilla).

Moreover, we test SGX-Spark [12], a state-of-the-art SGX-
based solution that protects both analytical and ML compu-
tation done with Apache Spark. It is designed to process
sensitive information inside SGX enclaves, so it can be
considered the most similar to SOTERIA. However, SGX-
Spark can only guarantee that User Defined Functions (UDFs)

6

TABLE 2: Representation of the tasks of each ML algorithm
and the data sizes for different workloads.

. Workloads
Algorithms Tasks Tiny Large Huge Gigantic
ALS RS 193KB 345MB 2GB 4GB
PCA DR 256KB 92MB 550MB 688MB
GBT P 36KB 46MB 92MB 183MB
LR C+P 11GB 134GB 335GB 894GB

RS: Recommendation Systems; DR: Dimensionality Reduction; P: Pre-
iction: C: Classification.

%&tg)f]i 3: Representation of the tasks of each ML algorithm

and the data sizes for different workloads.

. Workloads
Algorithms Tasks Tiny Large @ Huge Gigantic
ALS RS 193KB 345MB 2GB 4GB
PCA DR 256KB 92MB 550MB 688MB
GBT P 36KB 46MB 92MB 183MB
LR C+P 11GB 134GB 335GB 894GB

RS: Recommendation Systems; DR: Dimensionality Reduction; P: Pre-
diction; C: Classification.

are processed in secure enclaves. This decision leaves a large
codebase of Spark outside the protected memory region
and, consequently, limits the users to only being able to
execute privacy-preserving ML algorithms based on UDFs.

For each experiment discussed in the next section, we
include the average algorithm execution time and standard
deviation for 3 independent runs. The dstat monitoring tool
was used to collect the CPU, RAM, and network consump-
tion at each cluster node.

6 EVALUATION

Our evaluation answers three main questions: i) How does
SOTERIA impacts the execution time of ML workloads? ii) How
does the scheme compares, in terms of performance, with state-
of-the-art approaches (i.e., and SGX-Spark)? iii) Can SOTERIA
efficiently handle different algorithms and dataset sizes?

6.1 Methodology

Environment. The experiments use a cluster with eight
servers, with a 6-core 3.00 GHz Intel Core i5-9500 CPU,
16 GB RAM, and a 256GB NVMe. The host OS is Ubuntu
18.04.4 LTS, with Linux kernel 4.15.0. Each machine uses
a 10Gbps Ethernet card connected to a dedicated local
network. We use Apache Spark 2.3.0 and version 2.6 of
the Intel SGX Linux SDK (driver 1.8). The client and Spark
Master run in one server while Spark Workers are deployed
in the remaining seven servers. SGX memory is configured
to use 4GB.

Workloads. We resort to the HiBench benchmark [14] for
evaluating four ML algorithms (Table 3), that are broadly
used and natively implemented on top of MLIib, namely:
Alternating Least Squares (ALS), Principal Component
Analysis (PCA), Gradient Boosted Trees (GBT) and Linear
Regression (LR). For each algorithm, the benchmark suite
offers different workload sizes ranging from Tiny to Gigantic
configurations.

Setups and metrics. To validate SOTERIA’s performance,
and the benefits of fine-grained differentiation of secure ML
operations, we compare the implementations of our system
with the and schemes. These setups are compared with a
deployment of Apache Spark that does not offer privacy
guarantees (Vanilla).

Moreover, we test SGX-Spark [12], a state-of-the-art SGX-
based solution that protects both analytical and ML compu-
tation done with Apache Spark. It is designed to process
sensitive information inside SGX enclaves, so it can be
considered the most similar to SOTERIA. However, SGX-
Spark can only guarantee that User Defined Functions (UDFs)
are processed in secure enclaves. This decision leaves a large
codebase of Spark outside the protected memory region
and, consequently, limits the users to only being able to
execute privacy-preserving ML algorithms based on UDFs.

For each experiment discussed in the next section, we
include the average algorithm execution time and standard
deviation for 3 independent runs. The dstat monitoring tool
was used to collect the CPU, RAM, and network consump-
tion at each cluster node.

6.2 Performance Overview

Figures 4a, 4b, 4c and 4d present the performance evaluation
for PCA, GBT, ALS and LR algorithms for different workload
sizes. Next, we list our main observations to aid in the
characterization of these results. Unless stated otherwise,
the performance overhead values discussed in this section
correspond to the number of times that the algorithm’s ex-
ecution time increases for a given setup when compared to
the Vanilla Spark deployment results. Obs. 1 to 5 correspond
to the Huge workload for the defined algorithms, whilst Obs.
6 to 9 refer to the overall results in Figure 4.

Observation 1. Vanilla Spark’s execution times for ALS,
PCA, LR, and GBT algorithms are, respectively, 55, 655, 657,
and 189 seconds.

Observation 2. The execution time for ALS increases by
3.62x and 4.35x for and , respectively. SGX-Spark incurs an
execution overhead of 4x. Thus, the three setups have simi-
lar results while requiring approximately 150 seconds more
processing time than the vanilla deployment. Nevertheless,
performs slightly better than the other two approaches.
Observation 3. For PCA, and have an execution overhead
of 3.67x and 2.85x, while SGX-Spark increases the com-
putational time by 3.95x. When compared to SGX-Spark,
decreases the execution time by 12 minutes (27.8%).
Observation 4. For LR, and SGX-Spark exhibit an overhead
of 27.31x, while reduces this value to 18.2x. This reduction
of 29.6% allows to complete this workload 1.4 hours earlier.
Observation 5. With the GBT algorithm, shows similar exe-
cution times when compared to SGX-Spark, with a 7.04x and
6.64x increase, respectively. outperforms both approaches,
with an overhead of 4.79x, 27.8% less than SGX-Spark.
Observation 6. For Tiny and Large workloads with the PCA
algorithm, SOTERIA performs similarly for our two schemes,
while outperforming SGX-Spark. With larger workload
sizes, the overhead imposed by our solutions increases,
however, it continues to show better performance than SGX-
Spark. has an overhead of 1.96x to 5.15x for Tiny and
Gigantic workloads, whilst incurs an overhead of 1.72x to

7

3.79x. When compared with SGX-Spark, the results show an
absolute difference of 4 seconds and 7 minutes (7%), for ,
and 7 seconds and 33 minutes (19% and 31%) respectively,
for .

Observation 7. Regarding the GBT algorithm, and the Tiny
workload, the overhead of , , and SGX-Spark are similar.
However, the difference between the three approaches is
more visible when increasing the workload size. (Tiny-
2.13x and Gigantic-5.88x) outperforms both approaches,
while (Tiny-2.18x, Gigantic-9.35x) and SGX-Spark (Tiny-2.3x,
Gigantic-10.34x) have similar results. is able to surpass SGX-
Spark’s execution time in the Gigantic workload by up to
41%.

Observation 8. With ALS, shows an execution time over-
head of 2.04x and 3.28x, for the Tiny and Gigantic workloads,
respectively. achieves lower overhead than and SGX-Spark
for all dataset sizes, with the execution time decreasing by
8 seconds (9%) for the Tiny and 191 seconds (27%) for the
Gigantic workloads.

Observation 9. For LR, with the Tiny workload, and increase
execution time by 14.39x and 12.95x, respectively. As for
the Gigantic workload, incurs an overhead of 30.04x and of
23.89x. Compared to SGX-Spark, our decreases the execu-
tion time by 43 seconds for the Tiny workload and by 4.31
hours for the Gigantic workload (22.6%).

Observation 10. Overall, the CPU, RAM, and network usage
for both SOTERIA schemes is similar to the vanilla Spark
baseline. In more detail, with LR presents the upper-bound
limit for both memory and CPU, showing an increase of 9%
in both when compared with vanilla Spark (20%). Whilst
the network shows an upper-bound increase of 10% (vanilla
Spark shows an upper-bound network of 135MB) in with
PCA due to extra encrypted data paddings being sent
between Spark Workers.

Observation 11. SOTERIA does not impact the accuracy
of ML workloads. For all experiments, we measured the
corresponding accuracy metrics (e.g., accuracy, root mean
square error, or ROC). The results corroborate that both and
show accuracy values similar to the vanilla Spark version.

6.3 Analysis

We analyze the results based on i) dataset size; and ii) size
of trusted computing base (TCB).
Dataset size. For PCA, GBT, and ALS with smaller datasets,
and perform similarly (Figure 4). However, as the size of the
datasets increases, more operations and data must be trans-
ferred to the SGX enclave, thus taking a more noticeable toll
on the overall performance. The page swapping mechanism
of SGX, which occurs due to its memory limitations, incurs a
significant performance penalty [?], [7]. For example, when
compared to the vanilla setup, the PCA algorithm overhead
for varies between 1.96x for Tiny workload and 5.15x for
Gigantic workload. While for , the execution time increases
1.78x in the Tiny workload and 3.79x in the Gigantic work-
load.

is the setup that scales better as the amount of data to
be processed grows. Indeed, as seen in Obs. 6-9, it is able to
reduce execution time from 9% up to 31% when compared
to SGX-Spark.
Size of TCB. SGX-Spark outperforms for some of the
evaluated algorithms (Obs. 2, 4, and 5). As SGX-Spark only

200

ime (seconds)

2500
2000 =22
1500
1000

500

1150
1100
1 50

0 0
800 65000

Execution Time (seconds)

(a) PCA
Fig. 4: Runtime execution for PCA, GBT, ALS, and Linear Regression for Tiny, Large, Huge and Gigantic workloads. The

(b) GBT

legend is as follows: O Vanilla Spark; ; B ; @ SGX-Spark.

protects UDFs, the performance overhead imposed by the
larger TCB of is higher. Nevertheless, when compared to
SGX-Spark, covers a wider range of ML attacks, while
keeping performance overhead below 1.59x. Indeed, for
algorithms such as PCA, has similar or slightly inferior
execution times (Obs. 3) which is due to both setups per-
forming similar computations at the enclaves while the UDF
mechanism is not fully optimized.

On the other hand, always outperforms SGX-Spark and
(Obs. 2-5). This is due to the TCB reduction present in
our novel partitioning scheme. The results show that this
solution can reduce the training time by up to 30%, namely
for the LR algorithm with the Huge workload (Obs. 4).

Discussion. The results show that outperforms other
state-of-the-art approaches, namely SGX-Spark, for all the
considered ML algorithms. Also, achieves better perfor-
mance than the setup, while offering similar security guar-
antees when considering distinct ML attacks (Section 4.5).
This is made possible by filtering key operations to be done
outside enclaves.

In detail, when compared to , reduces ML workloads’
execution time by up to 37%. When compared with SGX-
Spark, the execution time is reduced by up to 41%. Inter-
estingly, for the LR algorithm using a Gigantic workload
(894GB), decreases computation time by 4.3 hours and 3.3
hours, when compared with SGX-Spark and , respectively.
The performance overhead of for the four different algo-
rithms ranges from 1.7x to 23.8x when compared to Vanilla
Spark.

7 RELATED WORK

Privacy-preserving ML with TEEs. Chiron [5] enables train-
ing ML models on a cloud service without revealing infor-
mation about the training dataset. Myelin [6] offers a similar
solution to Chiron while adding differential privacy and
data oblivious protocols to the algorithms to mitigate the
exploits from side-channels and the information leaked by the
model parameters. SOTERIA differs from these works as it
is able to cover both the training and inference phases while
providing additional protection against adversarial samples,
reconstruction, and membership inference attacks (Table 1).

In [17], five ML algorithms are re-implemented with data
oblivious protocols. These protocols combined with TEEs
ensure strong privacy guarantees while preventing the ex-
ploitation of side-channel attacks that observe memory, disk,
and network access patterns to infer private information.

250
200
150
100

50

52000 |Cirantc
39000
26000
13000

0

1600
1400

Execution Time (seconds)
Execution Time (seconds)

4200
0

(c) ALS

(d) LR

Unlike this solution, SOTERIA aims at transparently sup-
porting all ML algorithms built with MLlIib.
Privacy-preserving analytics with TEEs. TEEs have also
been used to ensure privacy-preserving computation for
general-purpose analytical frameworks [13]. In comparison
to SGX-Spark [12], detailed in Section 6.1, SOTERIA supports
a broader set of algorithms (i.e., any algorithm that can be
built with the MLlib API), while protecting users from a
more complete set of ML attacks (Table 1).

Opaque [8] and Uranus [9] resort to SGX to provide secure
general-purpose analytical operations, while only support-
ing a restricted set of ML algorithms. Opaque combines SGX
with oblivious protocols and requires the re-implementation
of default Apache Spark UDF operators. Uranus is also
based on porting UDF processing to SGX enclaves but
includes a single ML workload. Differently, SOTERIA is
targeted at ML workloads and is not limited by UDF-
based algorithms that, when compared with MLIib-based
ones, exhibit lower performance for some ML workloads [?].
Therefore, the design, implementation, and security require-
ments to be considered are distinct when compared with
SOTERIA.

8 CONCLUSION

We propose SOTERIA, a system for distributed privacy-
preserving ML. Our solution builds upon the combination
of Apache Spark and TEEs to protect sensitive information
being processed at third-party infrastructures during the ML
training and inference phases.

The innovation of SOTERIA stems from a novel parti-
tioning scheme () that allows specific ML operations to be
deployed outside trusted enclaves. Namely, we show that it
is possible to offload non-sensitive operations (i.e., statistical
calculations) from enclaves, while still covering a larger
spectrum of black-box ML attacks than in previous related
work. Also, this decision enables SOTERIA to perform better
than existing solutions, such as SGX-Spark, while reducing
ML workloads execution time by up to 41%.

ACKNOWLEDGMENT

This work was supported by the Portuguese Foundation for
Science and Technology through a PhD Fellowship (SFRH/-
BD/146528/2019 — Cldudia Brito) and the project AIDA -
Adaptive, Intelligent and Distributed Assurance Platform
(reference POCI-01-0247-FEDER-045907 - Jodo Paulo), co-
financed by the ERDF - European Regional Development

Fund through the Operacional Program for Competitive-
ness and Internationalisation - COMPETE 2020 and by the
Portuguese Foundation for Science and Technology - FCT
under CMU Portugal. Also, it was also funded by the
European Structural and Investment Funds in the FEDER
component, through the Operational Competitiveness and
Internationalization Programme (COMPETE 2020) [Project
n° 047264; Funding Reference: POCI-01-0247-FEDER-047264
- Bernardo Portela].

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via pre-
diction apis. In 25th USENIX Security Symposium, 2016.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and basic
countermeasures. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2015.
Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al.
Privacy-preserving deep learning via additively homomorphic
encryption. IEEE Transactions on Information Forensics and Security,
2017.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R Sava-
gaonkar. Innovative instructions and software model for isolated
execution. Hasp@ isca, 2013.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and
Emmett Witchel. Chiron: Privacy-preserving machine learning as
a service. arXiv preprint arXiv:1803.05961, 2018.

Nick Hynes, Raymond Cheng, and Dawn Song. Efficient
deep learning on multi-source private data. arXiv preprint
arXiv:1807.06689, 2018.

Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio
Schiavoni, Pascal Felber, and Daniel Hagimont. Everything you
should know about intel sgx performance on virtualized systems.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 2019.

Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada
Popa, Joseph E Gonzalez, and Ion Stoica. Opaque: An oblivious
and encrypted distributed analytics platform. In 14th USENIX
Symposium on Networked Systems Design and Implementation, 2017.
XC Jianyu Jiang, CW Tzs, On Li, T Shen, and S Zhao. Uranus: Sim-
ple, efficient sgx programming and its applications. In Proceedings
of the 15th ACM ASIA Conference on Computer and Communications
Security (ASIACCS ‘20), 2020.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-
based adversarial attacks: Reliable attacks against black-box ma-
chine learning models. In International Conference on Learning
Representations, 2018.

Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli,
Somesh Jha, and Songbai Yan. Exploring connections between
active learning and model extraction. In 29th USENIX Security
Symposium, 2020.

Large-Scale Data & Systems (LSDS) Group. Sgx-spark. https://
github.com/lsds/sgx-spark. (Accessed on 15/02/2021).

Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur
Khan. Sgx-bigmatrix: A practical encrypted data analytic frame-
work with trusted processors. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017.
Intel. Hibench is a big data benchmark suite. https:/ /github.com/
Intel-bigdata/HiBench. (Accessed on 21/02/2021).

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen,
Shivaram Venkataraman, Michael] Franklin, et al. Apache spark:
a unified engine for big data processing. Communications of the
ACM, 2016.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shiv-
aram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Man-
ish Amde, Sean Owen, et al. Mllib: Machine learning in apache
spark. The Journal of Machine Learning Research, 2016.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta,
Sebastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious
multi-party machine learning on trusted processors. In 25th
USENIX Security Symposium (USENIX Security 16), 2016.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

9

Microsoft Azure. Azure confidential computing. https://azure.
microsoft.com/en-us/solutions/confidential-compute/. (Ac-
cessed on 05/01/2021).

Salman Igbal, Miss Laiha Mat Kiah, Babak Dhaghighi, Muzammil
Hussain, Suleman Khan, Muhammad Khurram Khan, and Kim-
Kwang Raymond Choo. On cloud security attacks: A taxonomy
and intrusion detection and prevention as a service. Journal of
Network and Computer Applications, 2016.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
machine learning at scale. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017.

Jean-Baptiste Truong, Pratyush Maini, Robert] Walls, and Nicolas
Papernot. Data-free model extraction. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine learn-
ing models. In Symposium on Security and Privacy (SP). IEEE, 2017.
Mohammad Al-Rubaie and] Morris Chang. Privacy-preserving
machine learning: Threats and solutions. IEEE Security & Privacy,
2019.

Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario
Fritz, and Yang Zhang. Updates-leak: Data set inference and
reconstruction attacks in online learning. In 29th USENIX Security
Symposium, 2020.

Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: an
extremely simple oblivious ram protocol. In Proceedings of ACM
SIGSAC conference on Computer & communications security, 2013.

R. Canetti. Universally composable security: a new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo
Portela, Ahmad-Reza Sadeghi, Guillaume Scerri, and Bogdan
Warinschi. Secure multiparty computation from sgx. In Inter-
national Conference on Financial Cryptography and Data Security.
Springer, 2017.

Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-sgx: A
practical library os for unmodified applications on sgx. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), 2017.

https://github.com/lsds/sgx-spark
https://github.com/lsds/sgx-spark
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/

	Introduction
	Background
	Apache Spark and MLlib
	Intel Software Guard Extensions

	Applications and Security Model
	Soteria Threat Model
	ML Workflow Attacks

	Soteria
	Apache Spark: Architecture and Flow
	Soteria Client
	Soteria Cluster
	Soteria Design
	Security
	Security implications of statistical leakage
	Relation to ML Attacks

	Implementation

	Methodology
	Evaluation
	Methodology
	Performance Overview
	Analysis

	Related Work
	Conclusion
	References

