
The Case for Storage Optimization Decoupling in
Deep Learning Frameworks

Ricardo Macedo, Cláudia Correia, Marco Dantas, Cláudia Brito
INESC TEC & University of Minho

{ricardo.g.macedo, claudia.s.mendonca, marco.f.dantas, claudia.v.brito}@inesctec.pt

Weijia Xu
Texas Advanced Computing Center

xwj@tacc.utexas.edu

Yusuke Tanimura, Jason Haga
National Institute of Advanced Industrial Science and Technology

{yusuke.tanimura, jh.haga}@aist.go.jp

João Paulo
INESC TEC & University of Minho

joao.t.paulo@inesctec.pt

Abstract—Deep Learning (DL) training requires efficient ac-
cess to large collections of data, leading DL frameworks to
implement individual I/O optimizations to take full advantage of
storage performance. However, these optimizations are intrinsic
to each framework, limiting their applicability and portability
across DL solutions, while making them inefficient for scenarios
where multiple applications compete for shared storage resources.

We argue that storage optimizations should be decoupled
from DL frameworks and moved to a dedicated storage layer.
To achieve this, we propose a new Software-Defined Storage
architecture for accelerating DL training performance. The
data plane implements self-contained, generally applicable I/O
optimizations, while the control plane dynamically adapts them
to cope with workload variations and multi-tenant environments.

We validate the applicability and portability of our approach
by developing and integrating an early prototype with the
TensorFlow and PyTorch frameworks. Results show that our I/O
optimizations significantly reduce DL training time by up to 54%
and 63% for TensorFlow and PyTorch baseline configurations,
while providing similar performance benefits to framework-
intrinsic I/O mechanisms provided by TensorFlow.

Index Terms—Software-Defined Storage, Application-specific
storage, Deep Learning frameworks

I. INTRODUCTION

Recently, the research and practical use of deep learning
(DL) techniques have experienced an unprecedented growth.
To provide accurate predictions, DL models must be trained
with diverse datasets that range from a few MiB [1], [2] to
several TiB [3]–[5] in size. Thus, DL training has become
prohibitively expensive and time-consuming, and extensive
work has been done to accelerate training performance, in-
cluding specialized hardware [6], [7], schedulers [8], [9], and
carefully engineered optimizations at the compiler [10], [11],
communication [12]–[14], and GPU [15]–[17] layers.

With the advent of such optimizations, however, the training
bottleneck has shifted to the storage layer [18]–[20]. Specifi-
cally, data is randomly read from backend storage, making it
harder to leverage caching and data tiering mechanisms, while
significantly impacting training performance. To address this
issue, recent work has been focused on developing system-
specific I/O optimizations over DL frameworks (e.g., Tensor-
Flow [21], PyTorch [22], Chainer [23]), such as caching and

prefetching [19], [20], [24]–[26], storage tiering [26]–[28],
and data sharding [29], resulting in improved data loading
performance and overall training time.

This approach however, has two main drawbacks. First,
current optimizations are single-purposed, as they are tightly
integrated within the core of each DL framework and cannot be
easily decoupled, making it challenging to port them to other
frameworks that would equally benefit from such optimiza-
tions. This effect becomes further amplified when considering
complex I/O stacks made of multiple layers throughout the
I/O path, whose storage access is distributed over several
types of nodes, which is the case of modern high-performance
computing (HPC) infrastructures [30]–[32]. Second, in shared
environments where multiple systems operate concurrently and
compete for shared storage resources, framework-specific opti-
mizations only have partial visibility of the overall I/O stack,
which can lead to conflicting optimizations and misconfigu-
ration [33], [34], I/O contention [32], [35], and performance
variation [36]–[38].

To address these challenges, we argue that I/O optimizations
should be decoupled from DL frameworks and moved to a
dedicated storage layer with system-wide visibility. By moving
I/O optimizations to a dedicated, adaptable, and extensible
storage component, they become generally applicable and
portable across DL frameworks, improving their applicabil-
ity and adoption. Further, rather than operating in isolation,
optimizations must have global visibility of the infrastructure
to ensure coordinated and holistic control of all resources.

In conformity with these design directives, we propose a
new Software-Defined Storage (SDS) [39] architecture for
accelerating DL training performance. Following a software-
defined approach, DL I/O optimizations are decoupled into
two planes of functionality. The control plane is a logically
centralized entity with global visibility that defines the control
logic of I/O optimizations through user-defined policies, while
the data plane implements the actual I/O logic to be employed
over DL requests. Under this design, I/O optimizations are im-
plemented as self-contained, generally applicable, and exten-
sible building blocks (data plane) that can be adapted to cope
with volatile system requirements and workload variations

649

2021 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-9666-4/21/$31.00 ©2021 IEEE 
DOI 10.1109/Cluster48925.2021.00096

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

lu
st

er
 C

om
pu

tin
g 

(C
LU

ST
ER

) |
 9

78
-1

-7
28

1-
96

66
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
lu

st
er

48
92

5.
20

21
.0

00
96

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 



(control plane). Contrary to system-specific optimizations, our
design is framework-agnostic and can be extended with ease,
promoting portability and code-reuse.

Prior SDS work is ineffective to address these challenges,
as it is designed for enforcing policies at a given layer (e.g.,
hypervisor [40], [41], file system [42], object store [43])
or is only applicable over a specific storage context (e.g.,
virtualization [40], [44], cloud-based environments [40], [45]).

We developed PRISMA, an early prototype of our SDS
system, where the data plane implements a parallel data
prefetching mechanism that reads training data in advance
and stores it in an in-memory buffer to serve incoming I/O
requests; and the control plane provides an auto-tuning control
algorithm that automatically adjusts the number of threads
reading from storage and the size of the in-memory buffer.
We validate its applicability and portability by optimizing the
training performance of two popular DL frameworks, namely
TensorFlow and PyTorch, under different models and configu-
rations. The integration of our solution only required adding 10
and 35 LoC to TensorFlow and PyTorch, respectively. Further,
our approach does not require any manual input from users nor
modifications to the internal DL framework workflow.

Preliminary results show that our SDS-enabled I/O opti-
mizations can significantly decrease DL training time. Under
PyTorch, our approach observes performance gains up to
63%, outperforming any manually optimized setup under 8
parallel I/O workers, while also performing constantly across
different combinations of workers. For TensorFlow, PRISMA
provides similar performance benefits to framework-intrinsic
mechanisms while reducing training time up to 54% when
compared to a vanilla configuration.

In summary, this paper makes the following contributions:
• Redesign DL frameworks’ storage optimizations. We

propose a new approach for implementing storage opti-
mizations of DL frameworks. We propose a novel SDS
architecture for accelerating DL training performance,
that repurposes monolithic and framework-specific I/O
optimizations into SDS-enabled ones (§III).

• Middleware for accelerating training performance.
We implemented PRISMA, a framework-agnostic SDS-
enabled middleware that improves the I/O performance
of modern DL frameworks (§IV).

• Integration of PRISMA with popular DL frameworks.
We integrated PRISMA with TensorFlow and PyTorch,
validating its applicability and feasibility over different
DL frameworks (§IV).

• Experimental evaluation of our approach. Experimen-
tal evaluation demonstrating the performance of PRISMA
when compared to TensorFlow and PyTorch (§V).

This paper is organized as follows. §II details the back-
ground and limitations of traditional I/O optimizations in
DL frameworks. §III proposes a new SDS system for DL
frameworks, while §IV describes a preliminary implementa-
tion of our approach. §V demonstrates obtained experimental
results. §VI surveys existing related work. §VII discusses
future research directions and concludes the paper.

II. BACKGROUND AND MOTIVATION

For DL models to provide accurate predictions, they must
be trained with large and varied datasets. During the training
phase, data samples are continuously read from storage in
random order to avoid overfitting [46]. This, however, incurs
significant performance overhead to the training process [19],
[20], [26], as conventional file systems are optimized for large
and sequential accesses instead of small and random ones.

After being read from storage, samples are preprocessed
in memory, typically by the CPU, and then batched and
transferred to GPU to train the neural network. While ideally
there would always be batches available to be consumed by
the GPU, in I/O-bound models, computing is faster than data
loading causing the GPU to sit idle most of the time [19],
[47]. Thus, modern DL frameworks (e.g., TensorFlow) provide
an optimized data loading pipeline composed of specific I/O
optimizations to accelerate DL training, including caching and
data prefetching [20], [24]–[26], parallel I/O [24], [25], storage
tiering [26]–[28], and auto-tuning mechanisms [48]. However,
these optimizations have two main limitations:

Tightly coupled optimizations. Current DL I/O optimizations
are framework-specific, as they are tightly integrated within
the core of each framework. Implementing such optimizations
requires significant system rewrite, reducing their portability
and wider adoption over DL frameworks that would equally
benefit from such optimizations. Further, this design makes
fine-tuning and extending optimizations to cope with differ-
ent system requirements an increasingly complex and time-
consuming task, as it demands deep understanding of the
framework’s internal operation model.

For example, let us consider TensorFlow’s autotuning op-
timization [48]. This mechanism enables the number of I/O
threads and the buffer size to be automatically adapted during
training. For this to be possible, TensorFlow periodically
collects runtime information about each transformation of the
input pipeline, while a background task uses this information
to continually distribute the available CPU and memory across
all parallel transformations. As this optimization is tightly
integrated with TensorFlow’s internal mechanisms, porting it
to other frameworks that would also benefit from it, such
as PyTorch and Chainer, is not trivial and requires profound
system refactoring. This is equally true for optimizations that
seek to improve storage backend performance (e.g., optimized
data formats [49], modified access patterns [50]).

Partial visibility. System-specific optimizations are single-
purposed and applied over a subset of the system’s scope.
This leads optimizations to act in isolation, as they do not
consider systems that operate concurrently over the same
resources, resulting in conflicting optimizations and misconfig-
urations [33], [34], I/O contention, and performance variation.
For instance, while computational resources (e.g., CPU, GPU)
can be fairly isolated in HPC infrastructures, through exclusive
node allocation or resource isolation techniques (e.g., Linux’s
cgroups, containerization), the same does not apply for I/O
resources, including network and shared storage. As such, it

650

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 



is extremely challenging to efficiently execute hundreds of DL
jobs that compete for shared storage resources [32], [36]–
[38], for example, at distributed storage backends such as
Lustre [51], GPFS [52], and BeeGFS [53].

To address these challenges, we advocate for optimization
decoupling, where I/O optimizations are moved to an indepen-
dent layer, being generally applicable and portable to different
DL frameworks. We also argue that optimizations should
also have system-wide visibility, and ensure coordinated and
holistic control of all storage resources.

III. SOFTWARE-DEFINED STORAGE FOR DEEP LEARNING
FRAMEWORKS

We propose a new Software-Defined Storage system for
accelerating DL training performance. Rather than designing
monolithic and framework-specific optimizations, we decouple
these into two planes of functionality, namely control and data.
The control plane holds the control logic of I/O optimizations
through user-defined policies (e.g., caching and tiering poli-
cies, prioritize workloads) that orchestrate the overall system
stack. The data plane contains the actual I/O mechanisms
required to enforce such policies, which are implemented as
self-contained and extensible building blocks, and provide the
necessary tuning knobs to be adjusted upon workload and
policy variations. Such a design allows to implement I/O
optimizations with system-wide visibility that are generally
applicable and portable across DL frameworks while ensuring
coordinated and holistic control of storage resources.

A. Design

Figure 1 outlines the design of our approach. The data
plane is designed as a framework-agnostic storage middle-
ware that sits between the DL framework (e.g., TensorFlow,
PyTorch) and the backend storage system (e.g., local or
distributed storage). It is made of multiple stages that can be
placed either locally (i.e., single compute node) or distributed.
Internally, each stage is organized into three main modules. It
provides an optimization object abstraction that allows users
to implement custom storage optimizations to apply over DL
requests. Examples of such objects include data prefetching,
parallel I/O, and storage tiering. Such an abstraction provides
users with the means to develop new and reusable I/O mech-
anisms tailored for enforcing specific DL optimizations. It
also exposes a POSIX-compliant interface that intercepts the
DL framework’s storage requests (e.g., read, pread) and
submits them to the optimization objects for the respective
I/O logic to be applied. Finally, it implements a control
interface that communicates with the control plane for internal
stage management (e.g., policies) and monitoring. Contrarily
to traditional approaches, the I/O mechanisms implemented in
the data plane focus solely on optimizing the I/O interaction
between DL frameworks and the file system, being agnostic
of the remainder optimizations of the training pipeline (e.g.,
scheduling, GPU and memory management, networking).

The control plane is a logically centralized component
with system-wide visibility that controls and coordinates the

DL framework

Compute Node

Remote storage

Local storage

Local setting

DL Instance1

Compute Node

Data plane stage1

Local storage

DL Instance3

Compute Node

Data plane stage3

Local storage

Distributed setting

Control
plane

DL InstanceN

Compute Node

Data plane stage4

Local storage

DL Instance2

Compute Node

Data plane stage2

Local storage

Remote storage

Data plane stage
POSIX Interface

Prefetch Tiering ...

Control
operations

I/O workflows

Fig. 1. SDS-enabled architecture for Deep Learning frameworks under local
and distributed settings.

data plane stages and how I/O requests should be handled. It
communicates with the data plane for collecting monitoring
metrics (e.g., cache hits, I/O rate) and enforcing storage
policies to respond to workload variations. The control logic of
I/O optimizations is implemented as centralized control algo-
rithms, which are simpler and less error-prone than designing
the corresponding decentralized versions [40]. This centralized
control eases the development and maintenance of complex
storage optimizations and enables holistic and coordinated
control across the I/O stack. While logically centralized, the
control plane is physically distributed and made of multiple
controllers to meet the scalability and availability (in case of
controller failures) requirements of large scale infrastructures.

Our design focuses on DL storage access optimizations,
which could be used to complement existing compute or
communication-based optimizations conducted at other phases
of the training pipeline [13], [15], [54].

IV. PRISMA

To demonstrate the feasibility of our approach we developed
PRISMA, a preliminary prototype that implements an SDS-
enabled version of TensorFlow’s [24] and PyTorch’s [25] par-
allel I/O and data prefetching optimizations. Its main purpose
is to always serve data from high-speed memory when the
DL framework requests it. DL frameworks spawn one or more
threads (or processes) to read training data, which are referred
as consumers, and its number is oblivious to PRISMA.

Data plane. The data plane implements a parallel data pre-
fetching optimization object that proactively reads data from
backend storage and holds it in an in-memory buffer. It per-
forms parallel I/O using multiple threads (at most t), referred
to as producers, that concurrently read data from storage.
The order in which files are read is given by an internal
FIFO queue that stores the filenames of dataset samples. A
filenames list, populated by the DL framework at the beginning
of the training phase, is shared with PRISMA so it knows in
advance which files will be requested. This file is created with
a simple Python module that receives a list with the names

651

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 



of all training files and shuffles them for each epoch.1 Note
that this process only requires changing the job’s script, and
does not change how files are shuffled and requested by the
DL platform, which is important to avoid any impact on the
accuracy of the trained model [46]. Each producer dequeues a
filename from the queue and reads data from storage, which is
then stored in the in-memory buffer so it can be later provided
to the DL framework. The in-memory buffer stores at most
N training samples. Since the training process only requires
files to be read a single time for each epoch, the caching
policy is quite straightforward — a training file is stored in
the buffer whenever it is read by a producer and is evicted
when a consumer requests it. As DL training is predominantly
read-oriented [18], [19], PRISMA’s POSIX interface exposes
a single read method to intercept and service read requests
to the DL framework.

Control plane. The control plane implements the control
logic of our I/O optimization. For ease of development, it
is implemented as a logical component of our middleware.
Instead of delegating to the user the responsibility of finding
the optimal combination of parallel reads (t) and buffer size
(N) to use, we developed an auto-tuning control algorithm that
automatically adjusts these parameters. The algorithm selects
t and N to provide a balanced trade-off between performance
and resource usage. To ensure this, the control algorithm
uses a feedback control loop [55] that collects statistics from
the data plane (i.e., buffer usage) and continuously adjusts
its parameters (i.e., t and N) until converging to an optimal
configuration. This algorithm is similar to TensorFlow’s auto-
tuning mechanism [48], however, it is implemented as a
control algorithm that can be easily extended and ported across
different DL frameworks.

Integration with DL frameworks. To demonstrate the porta-
bility and applicability of our solution, we integrated PRISMA
with TensorFlow and PyTorch. For TensorFlow, as it exposes
different interfaces to interact with varied storage backends
(e.g., POSIX, HDFS, S3), we extended the existing POSIX
file system backend and replaced the pread invocation with
Prisma.read, which directly reads data from PRISMA
rather than accessing the storage backend. This only required
changing 10 LoC. For PyTorch, because it uses processes
instead of threads, we implemented an inter-process com-
munication client-server through UNIX Domain Sockets. For
each spawned process, a PRISMA client instance is created to
intercept all read invocations and submit them to the server to
be handled. This required changing 35 LoC.

V. EVALUATION

We now conduct a set of experiments that seek to answer
the following research questions:

• Can PRISMA improve DL I/O performance?
• How does PRISMA compare with framework-intrinsic

storage optimizations?

1The filename shuffling process is performed identically to the original
shuffle mechanism of the DL framework.

0
1000
2000
3000
4000
5000

64 128 256

Tr
ai

ni
ng

 ti
m

e 
(s

)

Batch size Batch size Batch size

TF baseline TF optimized PRISMA

LeNet AlexNet ResNet-50

0
1000
2000
3000
4000
5000

64 128 256

AlexNet ResNet-50

0
3000
6000
9000

12000
15000

64 128 256

ResNet-50

Fig. 2. Average training time of TensorFlow and PRISMA with the LeNet,
AlexNet, and ResNet-50.

• Are these benefits observable for different frameworks?

Experimental setup. Experiments were conducted on a com-
pute node of the AI Bridging Cloud Infrastructure supercom-
puter2, equipped with two 20-core Intel Xeon processors, four
NVidia Tesla V100 GPUs, 384 GiB of RAM, and a single
1.6 TiB Intel SSD DC P4600. Software-wise, it uses CentOS
7.5 with the Linux kernel v3.10 and XFS file system.

Dataset, models, and DL frameworks. We used the Imagenet
dataset [56], that includes 1.28 million images (≈ 138 GiB)
for training and 50,000 images (≈ 6 GiB) for validation.
To ensure a comprehensive evaluation in terms of workload
heterogeneity, and according to previous work [47], our ex-
periments included I/O-bound models, namely LeNet [57] and
AlexNet [58], and a compute-bound model, namely ResNet-
50 [59]. We used TensorFlow v2.1.0 and PyTorch v1.7.0 to
validate and compare our approach.

Methodology. We measured the elapsed training time of all
experiments, each configured to run for 10 training epochs, and
simultaneously use all 4 GPUs available in the compute node.
Different batch size configurations were tested, namely 64,
128, 256. The results of each experiment concern the average
and standard deviation of 5 runs.

A. TensorFlow

Three TensorFlow setups were used for the experiments.
• TF baseline provides a non-optimized deployment with

single-threaded disk operations without data prefetching.
• TF optimized includes both disk I/O parallelism and

prefetching optimizations, which are managed by Ten-
sorFlow’s auto-tuning mechanism.

• PRISMA corresponds to the integration of PRISMA’s data
plane with the non-optimized TensorFlow.

Training time. Figure 2 depicts the training time for all setups.
PRISMA significantly improves the performance of I/O-bound
models, reducing training time by more than 50% for LeNet
and 20% for AlexNet, when compared to TF baseline. For
compute-bound models, similarly to TF optimized, PRISMA
has no impact on training time.

Contrary to TF baseline, PRISMA and TF optimized improve
training performance with larger batch sizes. With a batch
size of 64 and the LeNet model, PRISMA executes over
2,047 seconds while TF optimized achieves 1,851 seconds,

2[Online] Available: https://abci.ai.

652

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 



0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of concurrent threads

Ti
m

e 
pe

rc
en

ta
ge

 (%
)

PRISMA + LeNet
PRISMA + AlexNet
PRISMA + ResNet-50
TF optimized + LeNet
TF optimized + AlexNet
TF optimized + ResNet-50

Fig. 3. Cumulative distribution function for the time percentage of each
number of concurrent threads used by TensorFlow and PRISMA.

corresponding to a reduction in training time of 51% and 55%,
respectively. When the batch size increases, TF optimized
performs better than PRISMA. This is noticeable with LeNet
under a batch size of 256. While PRISMA executes over
1,880 seconds, TF optimized achieves 1,363 seconds, which
corresponds to a reduction in training time of 54% and 67%
when compared to TF baseline, respectively.

PRISMA’s prototype does not perform prefetching for vali-
dation files. In TF optimized, however, all read operations are
backed by TensorFlow’s I/O optimizations, explaining their
difference in training performance. Nonetheless, contemplat-
ing the prefetching of validation files would be feasible and
only require a few adjustments on the prototype, thus not
affecting the design principles of our approach. Furthermore,
as PRISMA’s control algorithm is similar to the TF optimized
auto-tuning mechanism (§IV), it is expected for both systems
to perform similarly. The same may not hold true when
considering other control algorithms.

Control algorithm. We also measured the percentage of time
spent by I/O threads actively reading data from the backend
storage. Figure 3 depicts the results for TF optimized and
PRISMA setups. PRISMA only uses at most 4 concurrent
threads (3 in the case of ResNet-50), while TF optimized
uses 2-7x more threads for training. While TF optimized
allocates the maximum number of threads (i.e., 30) regardless
of whether they are needed or not, PRISMA auto-tuning
mechanism only allocates the necessary threads, avoiding
overprovisioning while providing similar storage performance.

B. PyTorch

We evaluated a baseline PyTorch deployment with an in-
creasing number of worker processes (0-16). Note that the
number of workers must be chosen manually by users, while
the optimal configuration may vary according to the targeted
AI workload. PRISMA includes parallel I/O, prefetching, and
auto-tuning mechanisms. Experiments were conducted using
LeNet and AlexNet with a batch size of 256.

Training time. Figure 4 depicts the average training time for
both setups under the LeNet and AlexNet models. PRISMA
outperforms PyTorch with 0, 2 and 4 workers, presenting
an absolute decrease in training time of 2,618, 1,085, and
176 seconds for LeNet and 2,710, 1,171, and 337 seconds
for AlexNet. This improvement is justified by PRISMA start-
ing prefetching samples before the epoch begins. PyTorch,
however, decreases training time over PRISMA by 362 and

0
1000
2000
3000
4000
5000

0 2 4 8 16

Tr
ai

ni
ng

 ti
m

e 
(s

)

Number of workers Number of workers

PyTorch PRISMA

LeNet AlexNet

0
1000
2000
3000
4000
5000

0 2 4 8 16

AlexNet

Fig. 4. Average training time of PyTorch and PRISMA with the LeNet and
AlexNet models.

405 seconds for LeNet, and 211 and 542 for AlexNet with
8 and 16 workers, respectively. We observed that for 8+
workers, PRISMA presents a performance bottleneck upon
the synchronization between consumer and producer threads
accessing the in-memory buffer. This could be addressed by
tuning PRISMA for PyTorch’s operation model, specifically by
improving the synchronization in multi-process scenarios.

Nonetheless, it is important to note that PRISMA performs
similarly for different combinations of PyTorch workers. This
is due to PRISMA’s auto-tuning mechanism, which enables
users to avoid running exhaustive and time-consuming pre-
liminary experiments to find the best combination of workers.

VI. RELATED WORK

Software-Defined Storage. Existing SDS systems are de-
signed for enforcing storage policies at a specific storage
layer or storage context, thus not being suited for orchestrat-
ing modern DL frameworks [39]. Specifically, IOFlow [40],
sRoute [44], and PSLO [41] tackle the virtualization layer.
While suited for cloud-based environments, these solutions
cannot be used over scenarios that require bare-metal access
(i.e., direct access to resources) such as HPC infrastructures
and bare-metal cloud servers. Retro [45], Cake [60], and
Crystal [43] implement performance and resource manage-
ment policies over distributed file systems and object stores.
SafeFS [42] provides a framework for implementing and
stacking FUSE-based file systems on top of each other but
introduces non-negligible overhead to most POSIX calls.

HPC-oriented SDS systems, namely Clarisse [30] and
SIREN [31], implement resource management policies such as
parallel I/O scheduling and bandwidth reservations to ensure
isolation and QoS provisioning of HPC jobs. Thus, these are
not suited for implementing the optimizations discussed in this
paper (e.g., data caching and prefetching).

PAIO [61] is a general-purpose SDS data plane framework
that enables system designers to build custom-made data
plane stages applicable over different I/O layers, including
DL frameworks. While complementary to our contributions,
the optimizations presented in this paper could be also imple-
mented with PAIO. We leave this integration as future work.

I/O optimizations in DL. There has also been an increase in
the research and proposal of I/O optimizations for DL frame-
works. LMDBIO [18] introduces speculative parallel I/O and
I/O staggering for improving DL workloads running on top of
the LMDB key-value store. [62] extends Chainer to optimize

653

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 



data loading under a shared storage deployment. Quiver [26]
demonstrates how to efficiently cache data from remote to
local storage. These optimizations are single-purposed and
intrinsic to the core of each DL framework.

FanStore [27], DLFS [28], and DeepIO [50] focus on
optimizing data fetching and distribution across local storage.
Frameworks like DALI [54], CoorDL [19], and NoPFS [20]
are also aligned with the reutilization principle, as they are
designed to implement and reuse data preprocessing and I/O
optimizations across DL frameworks. These optimizations
operate in isolation with partial visibility, and thus cannot
ensure coordinated and holistic control of the overall I/O stack.

HPC I/O libraries. Existing HPC-oriented I/O libraries are
designed for optimizing the performance of HPC applications
through optimized data formats and by redefining I/O work-
flows. NetCDF [63] and HDF5 [64] provide a set of libraries
that support the creation, formatting, and access to portable
data models that can represent complex data objects and
metadata. ADIOS [65] is an I/O subsystem that offers a set of
APIs that enable system designers to control the I/O workflows
of scientific applications, including buffering, compression,
and indexing. ADIOS2 [66] extends the ADIOS system to
manage how data is produced and consumed in scientific
applications in order to reduce the cost of integrating different
data transport technologies. ROMIO [67] is a MPI-IO-based
library that offers a two-phase I/O optimization scheme for
efficiently accessing noncontiguous data. While these libraries
could be used to implement the I/O optimizations proposed
in our data plane, these would still operate in isolation and
with partial visibility, and thus, would be unable to ensure
coordinated and holistic control of the overall I/O stack.

VII. CONCLUSION AND DISCUSSION

We demonstrate the case for decoupling I/O optimizations
from DL frameworks and moving them to a dedicated storage
layer. Rather than following the traditional uncoordinated
development model of implementing independent I/O opti-
mizations, we follow an alternative approach. We propose
a new SDS architecture for accelerating DL training per-
formance and developed an early prototype that implements
a parallel data prefetching optimization. We demonstrate its
applicability and portability by integrating it with TensorFlow
and PyTorch. Preliminary results show that our approach
significantly outperforms baseline PyTorch and TensorFlow
configurations, and achieves similar performance benefits as
carefully engineered I/O optimizations in TensorFlow.

We believe our approach can be useful not only for accel-
erating the performance of existing DL frameworks but also
to those currently being designed, saving developers from re-
implementing custom and intrinsic I/O optimizations. We now
discuss some open questions and future research directions.

Implementing other optimizations. There is a large scope of
I/O optimizations that could be implemented under our design.
For instance, it would be interesting to explore the impact of
storage tiering policies under different datasets and models.

Moreover, it would be interesting to use our approach to
complement existing data pipeline frameworks, such as DALI
and CoorDL, adding support for other I/O optimizations (e.g.,
storage tiering) and system-wide visibility.

Distributed training settings. While we demonstrate the
impact of SDS-enabled optimizations in a local setting, it
would be interesting to explore their impact on large-scale
DL deployments, that require tight coordination and holistic
tunning of data plane stages.

Access coordination to shared datasets. Under shared stor-
age infrastructures (e.g., HPC centers), it is common to have
multiple DL jobs (that are oblivious of each other) operating
concurrently over the same dataset, leading to resource con-
tention and performance variation [32], [37]. As such, it would
be interesting to explore and introduce performance isolation
and resource fairness policies to these deployments.

Control plane scalability and dependability. Either for con-
trolling a large number of data plane stages (e.g., hundreds to
thousands of concurrent DL jobs) or enforcing storage policies
under volatile environments, it is fundamental to investigate
the control plane’s scalability and dependability.

AVAILABILITY

PRISMA user-level library, along with the TensorFlow and
PyTorch integrations, are publicly available at https://github.
com/dsrhaslab/prisma.

ACKNOWLEDGMENTS

We thank the National Institute of Advanced Industrial
Science and Technology for providing access to computa-
tional resources of AI Bridging Cloud Infrastructure (ABCI).
This work was financed by National Funds through the Por-
tuguese Foundation for Science and Technology (FCT) within
project PAStor (UTA-EXPL/CA/0075/2019) and through PhD
Fellowships SFRH/BD/146059/2019 (Ricardo Macedo) and
SFRH/BD/146528/2019 (Cláudia Brito).

REFERENCES

[1] A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of Features
from Tiny Images,” Citeseer, Tech. Rep., 2009.

[2] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST Database of
Handwritten Digits,” 1999. [Online]. Available: http://yann.lecun.com/
exdb/mnist/

[3] S. V. Lab, “ImageNet-22K,” 2020. [Online]. Available: https:
//imagenet.stanford.edu

[4] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadara-
jan, and S. Vijayanarasimhan, “YouTube-8M: A Large-Scale Video
Classification Benchmark,” CoRR, vol. abs/1609.08675, 2016.

[5] “cvdfoundation/open-images-dataset: Open Images Dataset,” 2017. [On-
line]. Available: https://github.com/cvdfoundation/open-images-dataset

[6] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in 44th Annual
International Symposium on Computer Architecture. ACM, 2017, pp.
1–12.

[7] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“NVidia Tensor Core Programmability, Performance & Precision,” in
2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops. IEEE, 2018, pp. 522–531.

654

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 



[8] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gan-
diva: Introspective Cluster Scheduling for Deep Learning,” in 13th
USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2018, pp. 595–610.

[9] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-Aware Cluster Scheduling Policies for Deep
Learning Workloads,” in 14th USENIX Symposium on Operating Systems
Design and Implementation. USENIX Association, 2020, pp. 481–498.

[10] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning,”
in 13th USENIX Symposium on Operating Systems Design and Imple-
mentation. USENIX Association, 2018, pp. 578–594.

[11] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“TASO: Optimizing Deep Learning Computation with Automatic Gen-
eration of Graph Substitutions,” in 27th ACM Symposium on Operating
Systems Principles. ACM, 2019, pp. 47–62.

[12] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir,
and B. V. Essen, “Aluminum: An Asynchronous, GPU-Aware Commu-
nication Library Optimized for Large-Scale Training of Deep Neural
Networks on HPC Systems,” in 2018 IEEE/ACM Machine Learning in
HPC Environments. IEEE, 2018, pp. 1–13.

[13] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: Generalized
Pipeline Parallelism for DNN Training,” in 27th ACM Symposium on
Operating Systems Principles. ACM, 2019, pp. 1–15.

[14] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling Distributed
Machine Learning with In-Network Aggregation,” in 18th USENIX Sym-
posium on Networked Systems Design and Implementation. USENIX
Association, 2021.

[15] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory opti-
mizations Toward Training Trillion Parameter Models,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2020, pp. 1–16.

[16] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“Superneurons: Dynamic GPU Memory Management for Training Deep
Neural Networks,” in 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 2018, pp. 41–53.

[17] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-
Efficient Neural Network Design,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2016, pp. 1–
13.

[18] S. Pumma, M. Si, W.-C. Feng, and P. Balaji, “Scalable Deep Learning
via I/O Analysis and Optimization,” ACM Transactions on Parallel
Computing, vol. 1, no. 1, pp. 1–34, 2019.

[19] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram, “Ana-
lyzing and Mitigating Data Stalls in DNN Training,” Proceedings of the
VLDB Endowment, vol. 14, no. 5, pp. 771–784, 2021.

[20] R. Böhringer, N. Dryden, T. Ben-Nun, and T. Hoefler, “Clairvoy-
ant Prefetching for Distributed Machine Learning I/O,” CoRR, vol.
abs/2101.08734, 2021.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System
for Large-Scale Machine Learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation. USENIX Association,
2016, pp. 265–283.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic Differentiation in
PyTorch,” 2017.

[23] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: A Next-
Generation Open Source Framework for Deep Learning,” in Proceedings
of Workshop on Machine Learning Systems in the 29th Annual Confer-
ence on Neural Information Processing Systems, vol. 5, 2015, pp. 1–6.

[24] “TensorFlow API: tf.data.Dataset,” 2021. [Online]. Available: https:
//www.tensorflow.org/api docs/python/tf/data/Dataset

[25] P. Contributors, “PyTorch Docs: torch.utils.data,” 2019. [Online].
Available: https://pytorch.org/docs/stable/data.html

[26] A. V. Kumar and M. Sivathanu, “Quiver: An Informed Storage Cache
for Deep Learning,” in 18th USENIX Conference on File and Storage
Technologies. USENIX Association, 2020, pp. 283–296.

[27] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski,
J. Cazes, and N. Gaffney, “FanStore: Enabling Efficient and Scalable
I/O for Distributed Deep Learning,” CoRR, vol. abs/1809.10799, 2018.

[28] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury,
“Efficient User-Level Storage Disaggregation for Deep Learning,” in
2019 IEEE International Conference on Cluster Computing. IEEE,
2019, pp. 1–12.

[29] S. Nakandala, Y. Zhang, and A. Kumar, “Cerebro: A Data System for
Optimized Deep Learning Model Selection,” Proceedings of the VLDB
Endowment, vol. 13, no. 12, p. 2159–2173, 2020.

[30] F. Isaila, J. Carretero, and R. B. Ross, “CLARISSE: A Middleware for
Data-Staging Coordination and Control on Large-Scale HPC Platforms,”
in IEEE/ACM 16th International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 2016, pp. 346–355.

[31] S. Karki, B. Nguyen, and X. Zhang, “QoS Support for Scientific
Workflows Using Software-Defined Storage Resource Enclaves,” in 2018
IEEE International Parallel and Distributed Processing Symposium.
IEEE, 2018, pp. 95–104.

[32] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
Wright, “A Year in the Life of a Parallel File System,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2018, pp. 931–943.

[33] S. Kim, H. Kim, J. Lee, and J. Jeong, “Enlightening the I/O Path:
A Holistic Approach for Application Performance,” in 15th USENIX
Conference on File and Storage Technologies. USENIX Association,
2017, pp. 345–358.

[34] H. Jo, S. hun Kim, S. Kim, J. Jeong, and J. Lee, “Request-aware
Cooperative I/O Scheduling for Scale-out Database Applications,” in 9th
USENIX Workshop on Hot Topics in Storage and File Systems. USENIX
Association, 2017.

[35] T. Patel, Z. Liu, R. Kettimuthu, P. Rich, W. Allcock, and D. Tiwari,
“Job Characteristics on Large-Scale Systems: Long-Term Analysis,
Quantification, and Implications,” in International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2020, pp. 1186–1202.

[36] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the IO Perfor-
mance of Petascale Storage Systems,” in 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2010, pp. 1–12.

[37] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium. IEEE, 2016, pp. 750–759.

[38] A. Jokanovic, J. C. Sancho, G. Rodriguez, A. Lucero, C. Minkenberg,
and J. Labarta, “Quiet Neighborhoods: Key to Protect Job Performance
Predictability,” in 2015 IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2015, pp. 449–459.

[39] R. Macedo, J. Paulo, J. Pereira, and A. Bessani, “A Survey and
Classification of Software-Defined Storage Systems,” ACM Computing
Surveys, vol. 53, no. 3, pp. 1–38, 2020.

[40] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron
et al., “IOFlow: A Software-Defined Storage Architecture,” in 24th ACM
Symposium on Operating Systems Principles. ACM, 2013, pp. 182–
196.

[41] N. Li, H. Jiang, D. Feng, and Z. Shi, “PSLO: Enforcing the Xth Per-
centile Latency and Throughput SLOs for Consolidated VM Storage,”
in 11th European Conference on Computer Systems. ACM, 2016, pp.
28:1–28:14.

[42] R. Pontes, D. Burihabwa, F. Maia, J. Paulo, V. Schiavoni et al., “SafeFS:
A Modular Architecture for Secure User-space File Systems: One FUSE
to Rule Them All,” in 10th ACM International Systems and Storage
Conference. ACM, 2017, pp. 9:1–9:12.

[43] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-Artigas, P. Garcı́a-
López et al., “Crystal: Software-Defined Storage for Multi-tenant Object
Stores,” in 15th USENIX Conference on File and Storage Technologies.
USENIX Association, 2017, pp. 243–256.

[44] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska, “sRoute:
Treating the Storage Stack Like a Network,” in 14th USENIX Conference
on File and Storage Technologies. USENIX Association, 2016, pp.
197–212.

[45] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted
Resource Management in Multi-tenant Distributed Systems,” in 12th

655

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 



USENIX Symposium on Networked Systems Design and Implementation.
USENIX Association, 2015, pp. 589–603.

[46] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in Neural Nets:
Backpropagation, Conjugate Gradient, and Early Stopping,” in Advances
in Neural Information Processing Systems, 2001, pp. 402–408.

[47] S. Sarkar, “A Scalable Artificial Intelligence Data
Pipeline for Accelerating Time to Insight,” 2019,
SNIA Storage Developer Conference. [Online]. Available:
https://www.snia.org/sites/default/files/SDC/2019/presentations/
Machine Learning/Sarkar Sanhita A Scalable Artificial Intelligence
Data Pipeline for Accelerating Time to Insight.pdf

[48] “TensorFlow Auto-tuner: prefetch autotuner.cc,” 2017. [Online]. Avail-
able: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
core/kernels/data/prefetch autotuner.cc

[49] “TensorFlow Tutorial: TFRecord and tf.Example,” 2021. [Online].
Available: https://www.tensorflow.org/tutorials/load data/tfrecord

[50] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu,
“Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC
Systems,” in 2018 IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems.
IEEE, 2018, pp. 145–156.

[51] P. Schwan, “Lustre: Building a File System for 1000-node Clusters,” in
Proceedings of the 2003 Linux Symposium, vol. 2003, 2003, pp. 380–
386.

[52] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in 1st USENIX Conference on File and
Storage Technologies. USENIX Association, 2002, pp. 231–244.

[53] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/O Characterization and Performance Evalu-
ation of BeeGFS for Deep Learning,” in 48th International Conference
on Parallel Processing. ACM, 2019.

[54] “nvidia/dali: NVidia DALI,” 2018. [Online]. Available: https://github.
com/NVIDIA/DALI

[55] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control
Theory. Courier Corporation, 2013.

[56] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet Large
Scale Visual Recognition Challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[57] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1097–1105.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2016, pp. 770–778.

[60] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica, “Cake:
Enabling High-level SLOs on Shared Storage Systems,” in 3rd ACM
Symposium on Cloud Computing. ACM, 2012, pp. 14:1–14:14.

[61] R. Macedo, Y. Tanimura, J. Haga, V. Chidambaram, J. Pereira, and
J. Paulo, “PAIO: A Software-Defined Storage Data Plane Framework,”
CoRR, vol. abs/2106.03617, 2021.

[62] K. Serizawa and O. Tatebe, “Accelerating Machine Learning I/O
by Overlapping Data Staging and Mini-batch Generations,” in 6th
IEEE/ACM International Conference on Big Data Computing, Appli-
cations and Technologies. ACM, 2019, pp. 31–34.

[63] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”
IEEE Computer Graphics and Applications, vol. 10, no. 4, pp. 76–82,
1990.

[64] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
Overview of the HDF5 Technology Suite and Its Applications,” in
EDBT/ICDT 2011 Workshop on Array Databases. ACM, 2011, p.
36–47.

[65] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in 6th International Workshop on Challenges of
Large Applications in Distributed Environments, 2008, pp. 15–24.

[66] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck et al., “ADIOS 2: The
Adaptable Input Output System. A framework for high-performance data
management,” SoftwareX, vol. 12, 2020.

[67] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O
in ROMIO,” in 7th Symposium on the Frontiers of Massively Parallel
Computation. IEEE, 1999, pp. 182–189.

656

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 19:50:47 UTC from IEEE Xplore.  Restrictions apply. 


