
Ricardo Macedo, Cláudia Correia, Marco Dantas, Cláudia Brito, João Paulo
INESC TEC & University of Minho

The Case for Storage
Optimization Decoupling in
Deep Learning Frameworks

IEEE Cluster 2021
1st Workshop on Re-envisioning Extreme-Scale I/O for Emerging Hybrid HPC Workloads
Virtual Meeting
September 7, 2021

Weijia Xu
Texas Advanced Computing Center (TACC)

Yusuke Tanimura, Jason Haga
National Institute of Advanced Industrial
Science and Technology (AIST)

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Extensive research and practical use of DL techniques

• DL models must be trained with large and diverse datasets

• DL has become prohibitively expensive

- Specialized hardware

- Schedulers

- Optimizations at compiler, communication, and GPU layers

• Training bottleneck has shifted to the storage layer

Deep Learning

2

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Data loading
Reading and preparing data to be consumed to the GPU

• Model training
Adapt network’s parameters to produce accurate predictions

Deep Learning

Storage

3

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Data loading
Reading and preparing data to be consumed to the GPU

• Model training
Adapt network’s parameters to produce accurate predictions

Deep Learning

Storage CPU

Reading Pre-processing Batching

3

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Data loading
Reading and preparing data to be consumed to the GPU

• Model training
Adapt network’s parameters to produce accurate predictions

Deep Learning

Storage CPU

Reading Pre-processing Batching

GPU

3

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Data loading
Reading and preparing data to be consumed to the GPU

• Model training
Adapt network’s parameters to produce accurate predictions

Deep Learning

Storage CPU

Reading Pre-processing Batching

GPU

• Random access pattern over backend storage
Challenging to caching and data tiering storage mechanisms

3

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• System-specific I/O optimizations over DL frameworks

- Caching and prefetching

- Storage tiering

- Data sharding

• This approach comes with two main drawbacks

- Tightly coupled optimizations

- Partial visibility

Deep Learning

4

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• DL I/O optimizations are framework-specific

• Require significant system rewrite

• Fine-tuning and extension is complex and time-consuming

• Reduced portability and adoption over other DL frameworks

- Porting TensorFlow’s auto-tuning optimization to PyTorch and
Chainer is not trivial

- Requires extensive system expertise

Tightly coupled optimizations

5

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Lines of code of 15 minor releases of TensorFlow, PyTorch, MxNet, and Chainer

• Optimizations at internal DL logic, but also at scheduling, GPU, network, and
storage

• Porting and maintaining storage optimizations between releases and DL
frameworks is extremely challenging

Tightly coupled optimizations

16
32
64
128
256
512
1024
2048
4096

0 5 10 15Li
ne

s
of

 C
od

e
(xx

10
00

)

Number of Releases

TensorFlow PyTorch MxNet Chainer

6

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Lines of code of 15 minor releases of TensorFlow, PyTorch, MxNet, and Chainer

• Optimizations at internal DL logic, but also at scheduling, GPU, network, and
storage

• Porting and maintaining storage optimizations between releases and DL
frameworks is extremely challenging

Tightly coupled optimizations

16
32
64
128
256
512
1024
2048
4096

0 5 10 15Li
ne

s
of

 C
od

e
(xx

10
00

)

Number of Releases

TensorFlow PyTorch MxNet Chainer

6

v1.2.0: 968K

v2.6.0: 3.15Mv2.0.0: 2.51M

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• System-specific optimizations are single-purposed

• Act in isolation and are oblivious to the remainder I/O stack

- Conflicting optimizations

- I/O contention

- Performance variability

Partial visibility

7

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• System-specific optimizations are single-purposed

• Act in isolation and are oblivious to the remainder I/O stack

- Conflicting optimizations

- I/O contention

- Performance variability

Partial visibility

7

DL job

DL job

DL job

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• System-specific optimizations are single-purposed

• Act in isolation and are oblivious to the remainder I/O stack

- Conflicting optimizations

- I/O contention

- Performance variability

Partial visibility

7

DL job

DL job

DL job

Memory

Processing (cpu, gpu)

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• System-specific optimizations are single-purposed

• Act in isolation and are oblivious to the remainder I/O stack

- Conflicting optimizations

- I/O contention

- Performance variability

Partial visibility

7

DL job

DL job

DL job

Memory

Processing (cpu, gpu)

Storage (local, remote)

Network

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

I/O optimizations should be
decoupled from DL frameworks

and moved to a dedicated storage
layer with system-wide visibility

8

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Redesign DL frameworks’ storage optimizations

• Software-Defined Storage

• Middleware for accelerating training performance

• PRISMA: framework-agnostic SDS-enabled middleware

• Integration with TensorFlow and PyTorch

• Experimental evaluation

• Demonstration of the performance and feasibility of PRISMA

Contributions

9

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• I/O optimizations are decoupled from the DL framework

• Control plane holds the control logic

- Logically centralized

- User-defined policies

- Orchestrates overall system stack

• Data plane implements the I/O logic

- Self-contained and extensible building blocks

- Tuning knobs to adjust upon workload and policy variations

• Implement generally applicable I/O optimizations with system-
wide visibility

Software-Defined Storage for DL
Frameworks

10

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Software-Defined Storage for DL
Frameworks

Compute Node

Remote storage

Local storage

Prefetch Tiering ...
DL framework

11

• I/O optimizations

- Are implemented internally

- Act in isolation

- Are oblivious of the remainder layers of
the I/O stack

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Software-Defined Storage for DL
Frameworks

DL framework

Compute Node

Remote storage

Local storage

Data plane stage
POSIX Interface

Prefetch Tiering ...

12

• Data plane

- Framework-agnostic middleware

- Multiple stages

- Optimization object abstraction

- POSIX-compliant interface

- Control interface

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Software-Defined Storage for DL
Frameworks

DL Instance1

Compute Node

Data plane stage1

Local storage

DL Instance3

Compute Node

Data plane stage3

Local storage

Control
plane

DL InstanceN

Compute Node

Data plane stage4

Local storage

DL Instance2

Compute Node

Data plane stage2

Local storage

Remote storage

Control

operations

I/O workflows

13

• Control plane

- Controls all data plane stages

- Centralized control logic

- Continuous monitoring

- Enforces policies upon
workload variations

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• SDS-enabled storage middleware

• Implements an auto-tuned parallel prefetching mechanism

• Generally applicable I/O optimizations

- Parallel I/O and data prefetching

- Always serve data from high-speed memory

• Auto-tuning control algorithm

- Finds the optimal combination of parallel reads and internal buffer size

- Feedback control loop

- Similar to TensorFlow’s auto-tuning mechanism

PRISMA

14

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• PRISMA was integrated with TensorFlow and PyTorch

• TensorFlow

- Replaces POSIX.pread with Prisma.read

- Only required changing 10 LoC

• PyTorch

- Inter-process communication client-server with UNIX Domain Sockets

- Only required changing 35 LoC

Integration with DL Frameworks

15

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Dataset, models, and DL frameworks
Imagenet dataset (150GiB)
LeNet, AlexNet, and ResNet-50 models
TensorFlow v2.1.0 and PyTorch v1.7.0

Methodology
10 training epochs
All 4 GPUs were used
Batch sizes: 64, 128, 256

Testbed
1x compute node at AI Bridging Cloud Infrastructure (ABCI) supercomputer
2x 20-core Intel Xeon processors
4x NVidia Tesla V100 GPUs
384GiB RAM
1.6TiB Intel SSD DC P4600
CentOS 7.5 with Linux Kernel 3.10 and XFS file system

Experimental Evaluation

16

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: TensorFlow
Tr

ai
ni

ng
 ti

m
e

(s
)

17

• PRISMA improves overall training time in I/O-bound models

• PRISMA does not optimize the I/O of validation files (11% of the dataset)

• PRISMA uses 4 I/O threads, while TF optimized uses 30

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Tr
ai

ni
ng

 ti
m

e
(s

)

- 2245 s - 2208 s

Experimental Evaluation: TensorFlow

18

• PRISMA improves overall training time in I/O-bound models

• PRISMA does not optimize the I/O of validation files (11% of the dataset)

• PRISMA uses 4 I/O threads, while TF optimized uses 30

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: TensorFlow
Tr

ai
ni

ng
 ti

m
e

(s
)

+ 517 s + 347 s

19

• PRISMA improves overall training time in I/O-bound models

• PRISMA does not optimize the I/O of validation files (11% of the dataset)

• PRISMA uses 4 I/O threads, while TF optimized uses 30

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: PyTorch
Tr

ai
ni

ng
 ti

m
e

(s
)

LeNet AlexNet

Number of worker processes Number of worker processes

20

• PRISMA outperforms PyTorch for a lower number of workers

• PRISMA enables the auto-tuning mechanism over PyTorch

• PRISMA concurrency control mechanisms add small overhead

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: PyTorch
Tr

ai
ni

ng
 ti

m
e

(s
)

LeNet AlexNet

Number of worker processes Number of worker processes

- 2618 s

- 1085 s

- 176 s - 337 s

- 1171 s

- 2710 s

21

• PRISMA outperforms PyTorch for a lower number of workers

• PRISMA enables the auto-tuning mechanism over PyTorch

• PRISMA concurrency control mechanisms add small overhead

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: PyTorch
Tr

ai
ni

ng
 ti

m
e

(s
)

LeNet AlexNet

Number of worker processes Number of worker processes

+ 362 s + 405 s + 211 s + 542 s

22

• PRISMA outperforms PyTorch for a lower number of workers

• PRISMA enables the auto-tuning mechanism over PyTorch

• PRISMA concurrency control mechanisms add small overhead

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Decoupling I/O optimizations from DL frameworks is feasible

• SDS architecture for accelerating DL training performance

• PRISMA storage middleware

• Generally applicable of I/O mechanisms

• Outperforms baseline TensorFlow

• Optimizes PyTorch for a low number of workers

Summary

23

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Implement other I/O optimizations

• Distributed training setting

• Access coordination to shared datasets

• Control plane scalability and dependability

Future Directions

24

The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

https://github.com/dsrhaslab/prisma

PRISMA is open source!

25

https://github.com/dsrhaslab/prisma

Ricardo Macedo, Cláudia Correia, Marco Dantas, Cláudia Brito, João Paulo
INESC TEC & University of Minho

The Case for Storage
Optimization Decoupling in
Deep Learning Frameworks

IEEE Cluster 2021
1st Workshop on Re-envisioning Extreme-Scale I/O for Emerging Hybrid HPC Workloads
Virtual Meeting
September 7, 2021

Weijia Xu
Texas Advanced Computing Center (TACC)

Yusuke Tanimura, Jason Haga
National Institute of Advanced Industrial
Science and Technology (AIST)

