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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Extensive research and practical use of DL techniques 

• DL models must be trained with large and diverse datasets 

• DL has become prohibitively expensive 

- Specialized hardware 

- Schedulers 

- Optimizations at compiler, communication, and GPU layers 

• Training bottleneck has shifted to the storage layer

Deep Learning
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Data loading 
Reading and preparing data to be consumed to the GPU 

• Model training 
Adapt network’s parameters to produce accurate predictions
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Storage
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• Random access pattern over backend storage 
Challenging to caching and data tiering storage mechanisms

3



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• System-specific I/O optimizations over DL frameworks 

- Caching and prefetching 

- Storage tiering 

- Data sharding 

• This approach comes with two main drawbacks 

- Tightly coupled optimizations 

- Partial visibility

Deep Learning
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• DL I/O optimizations are framework-specific 

• Require significant system rewrite 

• Fine-tuning and extension is complex and time-consuming 

• Reduced portability and adoption over other DL frameworks 

- Porting TensorFlow’s auto-tuning optimization to PyTorch and 
Chainer is not trivial  

- Requires extensive system expertise

Tightly coupled optimizations
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Lines of code of 15 minor releases of TensorFlow, PyTorch, MxNet, and Chainer 

• Optimizations at internal DL logic, but also at scheduling, GPU, network, and 
storage 

• Porting and maintaining storage optimizations between releases and DL 
frameworks is extremely challenging

Tightly coupled optimizations
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v1.2.0: 968K
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• System-specific optimizations are single-purposed 

• Act in isolation and are oblivious to the remainder I/O stack 

- Conflicting optimizations 

- I/O contention 

- Performance variability

Partial visibility
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

I/O optimizations  should be 
decoupled from DL frameworks 

and moved to a dedicated storage 
layer with system-wide visibility
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Redesign DL frameworks’ storage optimizations 

• Software-Defined Storage 

• Middleware for accelerating training performance 

• PRISMA: framework-agnostic SDS-enabled middleware 

• Integration with TensorFlow and PyTorch 

• Experimental evaluation 

• Demonstration of the performance and feasibility of PRISMA

Contributions
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• I/O optimizations are decoupled from the DL framework 

• Control plane holds the control logic 

- Logically centralized 

- User-defined policies 

- Orchestrates overall system stack 

• Data plane implements the I/O logic 

- Self-contained and extensible building blocks 

- Tuning knobs to adjust upon workload and policy variations 

• Implement generally applicable I/O optimizations with system-
wide visibility

Software-Defined Storage for DL 
Frameworks

10



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Software-Defined Storage for DL 
Frameworks
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DL framework
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• I/O optimizations 

- Are implemented internally 

- Act in isolation 

- Are oblivious of the remainder layers of 
the I/O stack



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Software-Defined Storage for DL 
Frameworks
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• Data plane 

- Framework-agnostic middleware 

- Multiple stages 

- Optimization object abstraction 

- POSIX-compliant interface 

- Control interface



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Software-Defined Storage for DL 
Frameworks
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• Control plane 

- Controls all data plane stages 

- Centralized control logic 

- Continuous monitoring 

- Enforces policies upon 
workload variations



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• SDS-enabled storage middleware 

• Implements an auto-tuned parallel prefetching mechanism 

• Generally applicable I/O optimizations 

- Parallel I/O and data prefetching 

- Always serve data from high-speed memory 

• Auto-tuning control algorithm 

- Finds the optimal combination of parallel reads and internal buffer size 

- Feedback control loop 

- Similar to TensorFlow’s auto-tuning mechanism

PRISMA
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• PRISMA was integrated with TensorFlow and PyTorch 

• TensorFlow 

- Replaces POSIX.pread with Prisma.read 

- Only required changing 10 LoC 

• PyTorch 

- Inter-process communication client-server with UNIX Domain Sockets 

- Only required changing 35 LoC

Integration with DL Frameworks
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Dataset, models, and DL frameworks 
Imagenet dataset (150GiB) 
LeNet, AlexNet, and ResNet-50 models 
TensorFlow v2.1.0 and PyTorch v1.7.0 

Methodology 
10 training epochs 
All 4 GPUs were used 
Batch sizes: 64, 128, 256 

Testbed 
1x compute node at AI Bridging Cloud Infrastructure (ABCI) supercomputer 
2x 20-core Intel Xeon processors  
4x NVidia Tesla V100 GPUs 
384GiB RAM 
1.6TiB Intel SSD DC P4600 
CentOS 7.5 with Linux Kernel 3.10 and XFS file system

Experimental Evaluation
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: TensorFlow
Tr

ai
ni

ng
 ti

m
e 

(s
)

17

• PRISMA improves overall training time in I/O-bound models 

• PRISMA does not optimize the I/O of validation files (11% of the dataset) 

• PRISMA uses 4 I/O threads, while TF optimized uses 30



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Tr
ai

ni
ng

 ti
m

e 
(s

)

- 2245 s - 2208 s

Experimental Evaluation: TensorFlow

18

• PRISMA improves overall training time in I/O-bound models 

• PRISMA does not optimize the I/O of validation files (11% of the dataset) 

• PRISMA uses 4 I/O threads, while TF optimized uses 30



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: TensorFlow
Tr

ai
ni

ng
 ti

m
e 

(s
)

+ 517 s + 347 s

19

• PRISMA improves overall training time in I/O-bound models 

• PRISMA does not optimize the I/O of validation files (11% of the dataset) 

• PRISMA uses 4 I/O threads, while TF optimized uses 30



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

Experimental Evaluation: PyTorch
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• PRISMA outperforms PyTorch for a lower number of workers 

• PRISMA enables the auto-tuning mechanism over PyTorch 

• PRISMA concurrency control mechanisms add small overhead
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• PRISMA outperforms PyTorch for a lower number of workers 

• PRISMA enables the auto-tuning mechanism over PyTorch 

• PRISMA concurrency control mechanisms add small overhead
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• PRISMA outperforms PyTorch for a lower number of workers 

• PRISMA enables the auto-tuning mechanism over PyTorch 

• PRISMA concurrency control mechanisms add small overhead



The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Decoupling I/O optimizations from DL frameworks is feasible 

• SDS architecture for accelerating DL training performance 

• PRISMA storage middleware 

• Generally applicable of I/O mechanisms 

• Outperforms baseline TensorFlow 

• Optimizes PyTorch for a low number of workers

Summary
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

• Implement other I/O optimizations 

• Distributed training setting 

• Access coordination to shared datasets 

• Control plane scalability and dependability

Future Directions
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The Case for Storage Optimizations Decoupling in Deep Learning Frameworks

https://github.com/dsrhaslab/prisma

PRISMA is open source!
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https://github.com/dsrhaslab/prisma
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