BDUS: Implementing Block Devices in User Space

Alberto Faria, Ricardo Macedo, José Pereira, Joao Paulo
INESC TEC & University of Minho

Syt
June 14-16 \/jrtual

Motivation

e Storageservices are typically implemented in the kernel

e More performant than user-level services

- Less context switches, memory copies

e Kernel-level development is complex

- Operating system-specific, limited environment

e User-space services have several advantages

- Easier development and maintenance

- Greater portability

- Access to more and higher-level languages and libraries
- Improved reliability, fault tolerance, and security

e FE.g.,FUSE: https://github.com/libfuse/libfuse

https://github.com/libfuse/libfuse

Block devices

e We consider user-level development at the block layer

e Block devices expose storage devices/systems

- Contiguous sequences of fixed-size blocks

e Used by awide range of applications block devices
- Either directly or through local file systems /dev
loopo
— loop1
Block device — r.n./r.ne0n1
— —- M ...
o | 1| 2| . [N1 — sda
; ; ; ; — sdb
Block o

(e.g., 512 bytes)

Block device drivers

e Block device drivers implement the behavior of block devices

e Aretypicallyincluded in the kernel

- Or separately as loadable kernel modules

e Canbeimplemented in user space by leveraging existing Client
application

operating system subsystems

S
E |

------- /dev/sda i

>

s !

< Block device
driver

Network Block Device (NBD)

e Provides access to remote storage through block devices

e Client-server architecture

- In-kernel block device driver as client
- User-space process as server

e Communication through TCP or Unix Domain Sockets

Client Custom
e Cancreate custom NBD servers application NBD server
- Using frameworks like BUSE, nbdcpp, nbdkit 3 l A
e Effectively allows building drivers in user space i ----------- -------
- Create custom server with desired logic % l w
- Deploy in same host as client ¥ NBD driver |

Evaluation methodology

e Built "pass-through" drivers with BUSE, nbdcpp, nbdkit

- Redirect all requests to underlying hardware device

e Measured throughput, latency, CPU utilization

- When operating on underlying device
- When operating on each pass-through device

e 16 workloads performing operations directly on block device

e 25 workloads performing operations on ext4 file system backed by block device

- Data-intensive micro workloads
- Metadata-intensive micro workloads
- Macro workloads

e (Fullresults in the paper)

NBD: Performance

e Throughput of pass-through devices, relative to underlying device:

- nbdcpp (not shown) never outperforms BUSE
- BUSE (like nbdcpp) processes requests sequentially; nbdkit in parallel
- Sockets impose an additional memory copy

il I _______ I __________________________ I ______________________ J _"
Dt N O DN O N $ $ & &
F RN > S 2 N & N § $

Relative throughput
o o O (e}
SN A O
| | [T
-
(A
[M—

*
&
8\\' \b &\ \b Q‘b\'@ {5@'\ o ‘b'b’ \é\‘ Q}'Q: Q,'% ,\;‘v’@ Qp%é
& ejb& & @fbb' & & N < ¥ be} & 0‘& &
& @& fb‘\b Qbs
) < >

Target Core Module in User space (TCMU)

SCSI: Standards for computer < storage device data transfer

Target: service that handles SCSI commands
Initiator: client that submits SCSI commands

Linux's SCSI subsystem includes TCMU

Enables user-level processes to act as SCSI targets
Communicates with kernel through the UIO framework

Can be used to create user-level block device drivers

Implement SCSI target using TCMU with desired logic
Deploy target in same host as client

Configure initiator to expose block device backed

by deployed target

Client Custom
application SCSI target
1
[<P]
3 | t

>
: | I
~ | SCSI initiator TCMU

TCMU: Performance

e Same plot as before, now with TCMU:

- Overhead on throughput of up to 57%
- Better than NBD-based solutions under some workloads, worse under others

I BUSE B nbdkit 1 TCMU

0.8 -
0.6
0.4

Relative throughput
=
o [\®]
T T |
4 [—

¥ooFoF xS e S N e ¢ ¢S
\s.Q N ':9 & \‘Zf , (<4 ;\ \‘Qf AS (9 (9) Q'}
&\ \b N\ \b Q:bl ‘b’\@ *e:b' ‘bb \QJ Q')\, e‘l% . \f—" so/%
0 4 & y & <@ 4 ¥ > & > 3
< &L PN &F < N <
£ & fb*\b &
S AN >

A new solution is needed

e Existing solutions have significant performance limitations

e Should not rely on subsystems designed for other purposes

- Inherent limitations of implementations targeting networked access
- Less room for specialized optimizations and improvements

e Cando better with a purpose-built framework

- Improve performance
- Unlock further performance and functionality improvements

10

The BDUS framework

Built specifically to enable the development of
block device drivers in user space

Design curtails memory copies and system calls

Fully-functional, open-source implementation for Linux
— https://github.com/albertofaria/bdus

Driver replacement and recovery with no downtime

- Hot-swap the driver of an existing device
- Recover from a failed driver without interruption of service

Less overhead and resource utilization than existing solutions

11

https://github.com/albertofaria/bdus

BDUS: Design and implementation

Two main components:

Drivers are user-level C programs

Run compiled driver to create device

Kernel < user communication uses ioctl()

kbdus kernel module

libbdus user-space library

Implement handlers for each request type
Specify block size, total device size, ...

Link against libbdus

Appropriate handler called for every request

Through character device /dev/bdus-control
Average of 1 system call per request

Driver |read() | | write() | ---
A,

|;,'|

1

libbdus

Worker thread

data buffer |

v

Client
application

kbdus

<« | Kernel
client

R software staging queue(s)

“ww hardware dispatch queue

eteeeeens control inversion queue

12

BDUS: Performance

e Same plot as before, now with BDUS:

- Degrades throughput by at most 33%
- Improves throughput over existing solutions by up to 43%
- Outperformed by nbdkit under file-/web-server due to unfair configuration (see paper §6.2)

N BUSE B nbdkit —3 TCMU 3 BDUS

Relative throughput

BDUS and FUSE

e FUSE: Enables the implementation of file systems in user space

e Similar objective as BDUS, different layer of the storage stack

- BDUS and FUSE are orthogonal and complementary to each other

e But many storage functionalities can be implemented at both layers

- Compression, deduplication, thin provisioning, encryption, erasure coding, replication, ...

e May have to decide between using BDUS or FUSE

- Must have knowledge of performance advantages/disadvantages

14

BDUS and FUSE: Performance

e Relative throughput of FUSE pass-through file system:

- Same workloads as before, compared with previous BDUS results
- BDUS outperforms FUSE significantly under many workloads
- Most noticeable under metadata-intensive workloads

1 BDUS &= FUSE

Workload
generator

v

FUSE
file system

Y

ext4
file system

= Y N it et e e ettt
—
= b= k=X
- oo [0
k] 1554
) o
> (%] k35 k2%
olele! 055 I
ot (%] 1< 1555
= %] toess %%
odele! [<55 [0
< odols! 155 15
— b 15 1
[} o0%e! 155 5
b 15 (5
(%] KX X
ogote! [55 1555
oless) 1244 15
%Y |
PR [15X
ototel [[
< <&
N 5
.6@ &

v

Underlying
block device

15

Summary

Existing solutions exhibit limited performance

Restricted by dependency on existing subsystems
- Also limits the introduction of specialized functionalities and optimizations

BDUS follows a clean-slate approach

- Improved performance and resource utilization
- Additional features for driver replacement and recovery
- Unlocks further performance and functionality improvements

Outperforms FUSE in file system stacks
- Particularly under metadata-intensive workloads

- BDUS s thus a useful alternative over FUSE when a storage solution can be built using either

16

BDUS is open source!

O https://github.com/albertofaria/bdus

17

https://github.com/albertofaria/bdus

