
2021 17th European Dependable Computing Conference (EDCC)

ATOCS: Automatic Configuration of Encryption
Schemes for Secure NoSQL Databases

David Ferreira
U. Lisboa & INESC-ID

davidjferreira@tecnico.ulisboa.pt

Joao Paulo
INESC TEC & U. Minho
joao.t.paulo@inesctec.pt

Miguel Matos
U. Lisboa & INESC-ID

miguel.marques.matos@tecnico.ulisboa.pt

Abstract-Secure databases have emerged to securely store and
process sensitive data at untrusted infrastructures (e.g., Cloud
Computing). To be secure and efficient, the encryption schemes
used by these systems must be carefully chosen. Indeed, this task
requires expertise both in databases and security, and is currently
being done manually, which is time-consuming and error-prone
and can lead to security violations, poor perfonnance, or both.

This paper presents ATOCS, a novel framework that analyses
the applications' code and, from the inferred requirements,
detennines the best combination of encryption schemes and
related configurations for the underlying secure NoSQL database.
Its design is modular and extensible thus facilitating the support
of different applications and database solutions. Our evaluation
with real-world applications shows that ATOCS is fast (it takes 44
seconds to analyse more than 12K LoC), accurate, and simplifies
the configuration of secure databases.

Index Terms-security and privacy, databases, code analysis

I. INTRODUCTION

Database Management Systems (DBMS) are widely used
to store and query large amounts of data. Since information
stored in a database can be sensitive, data confidentiality is a
prime concern for every company resorting to this technology.

Additionally, there is a business benefit for companies to
move their data storage and processing tasks into the cloud due
to economies of scale and the improved availability without the
need to make up-front investments in private infrastructures.
However, moving sensitive data to the cloud is in direct
confrontation with the privacy concern discussed above, as the
cloud provider has full control over the infrastructure and data.
This conundrum led to the development of secure database
systems such as CryptDB [2] and SafeNoSQL [3].

Secure databases allow applications to manipulate and query
data residing in an untrusted location (e.g., cloud provider)
while offering security and privacy guarantees over the data
and queries. This is achieved by leveraging a combination
of encryption schemes that support operations over encrypted
data such as equality, ordering or arithmetic operations.

Selecting the appropriate encryption schemes for a deployed
database is therefore a critical task. Namely, if the encryption
schemes are not chosen correctly, the secure database will not
be able to perform the operations correctly (e.g., performing
a sum with an encryption scheme that does not support
algebraic operations). Even if the encryption schemes provide
the required functionality, they might still not be the most
adequate in terms of performance or security. Additionally,

978-1-6654-3671-7/21/$31.00 ©2021lEEE
D0l10.1109/EDCC53658.2021.00017

67

choosing an incorrect encryption scheme might lead to latent
bugs, which can be very hard to identify and correct. As
an example, if the database performs a comparison between
two probabilistic cryptograms that originated from the same
plaintext data, the comparison will not fail but will wrongly
report that the values being compared are different.

With the increasing complexity of modern applications, not
only due to the application logic itself, but also due to secu­
rity, privacy and legal compliance requirements, it becomes
increasingly difficult - and hence error prone - to select the
right set of encryption schemes. For example, if one considers
a simple application whose database schema has 10 tables,
each with 10 columns, choosing the right encryption scheme
for the 100 columns quickly becomes a daunting and error­
prone task. Note that to select the most appropriate encryption
scheme, it is not enough to consider only the column's data
type, but also all the queries and operations that the application
does at each column. We argue that this crucial decision, with
far reaching implications in the security, dependability and
performance of the system, must not be done manually by
humans, but should rather be fully automated.

Therefore, we propose ATOCS, a framework that given the
application's code is able to automatically derive the most
appropriate encryption schemes for the underlying NoSQL
database. This is achieved by relying on code analysis to
automatically infer the types of operations performed over data
and then choosing an encryption scheme that supports those
operations. When several possibilities are available, ATOCS
proposes the one with the best security or performance trade­
offs according to the user's goals. By fully automating this
process, ATOCS removes human error and leads to more secure
and performant database applications.

Our experiments, with three real applications and a se­
cure database system, show that ATOCS can analyse different
applications while automatically providing a tailored secure
schema according to the performance, security and function­
ality requirements of each application. The analysis takes less
than 45 seconds for applications with thousands of lines of
source code, and can even be used to optimise performance
and resource usage configurations of secure databases.

In more detail, this paper makes the following contributions:
• ATOCS, a framework that automatically analyses the

code of applications and determines the most appropriate
encryption schemes and related database optimisations;

20
21

 1
7t

h
Eu

ro
pe

an
 D

ep
en

da
bl

e
Co

m
pu

tin
g

Co
nf

er
en

ce
 (E

DC
C)

 |
 9

78
-1

-6
65

4-
36

71
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

ED
CC

53
65

8.
20

21
.0

00
17

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Generic architecture for a secure database system.

ID DET
Age OPEUser

Group

TABLE 1: Example of a secure database schema.
Table Column Encryption Scheme

Name STD

Trusted site I Untrusted site,
I Encrypted,
: ReSra~nse ~

Handler 1-'-,-' • • .'
I Encrypted
I Request
: (2)
,

Secure Database Schema

the information stored and being processed at the database
server. Contrarily, the database client is deployed on a trusted
site where data encryption and decryption can be done safely.
The latter holds the application and the Handler which me­
diates the interactions between both sites. The untrusted site
hosts the database server(s) where encrypted data is stored and
processed. It is crucial that this data is never decrypted on the
untrusted site, so that no information is leaked.

To illustrate a typical flow of execution consider the
database schema (Table I) that has two tables User and
Group. When the application issues a query (1) (e.g. obtain
the names of users with age greater than 40), it is intercepted
by the Handler which encrypts the data contained in the
query. The Handler resorts to the secure database schema
to determine the encryption scheme for each column. In this
case, it encrypts the value 40 with OPE as this is the scheme
chosen for the Age column (Table I). Next, the Handler
submits the query to the untrusted database server (2). If
the database schema is correctly configured, the ciphertexts
retain the required properties from the original plaintexts and
operations can be performed transparently over the ciphertexts.

The response from the database server is sent to the Handler
(3) which decrypts it (resorting to the database schema once
again) before sending it back to the application. In our exam­
ple, we retrieved the Name column, so this will be decrypted
with STD (Table I). This is then sent to the application in
plaintext (4), which resides on the trusted site.

The secure schema is therefore a key component for these
databases, as it enables the Handler to know what encryption
scheme must be used for each database column. However,
assigning encryption schemes is a complex task that requires
knowing exactly what operations are being done over each
database column. Thus, this analysis is highly dependent on
the targeted application, making a manual approach unfeasible
for applications with a large code base.

c) Secure Database Systems: Secure solutions such as
CryptDB [2] and SafeNoSQL [3] encrypt database columns
with different combinations of encryption schemes to provide
a full-fledged database engine. CryptDB is applied to SQL
databases and follows an onion encryption approach where
each database column is encrypted with multiple encryption1https://github.com/miguelammatos/ATOCS

• an open-source implementation! of ATOCS including plu­
gins for two NoSQL databases: HBase and SafeNoSQL;

• a detailed evaluation with three real-world applications.
The rest of the paper is organised as follows. Section II

overviews the state of the art of secure databases and code
analysis tools. Section III describes the architecture and im­
plementation of ATOCS. Section IV presents the experimental
evaluation while Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The simplest way to provide secure storage and processing
at cloud services is to encrypt all the information, with a strong
probabilistic encryption scheme (e.g., AES), before sending it
to the server [4]. However, this does not allow executing any
kind of processing (equality or arithmetic operations over the
ciphertext) at the database server. To perform such operations,
data needs to be transferred to a trusted environment, de­
crypted and then processed. Naturally, such approach exhibits
poor performance which degrades as the amount of data grows.

A. Secure Databases
To overcome these shortcomings, secure databases resort to

encryption schemes that preserve different properties of the
original plaintext in the corresponding ciphertext. These allow
operations (i.e., equality, order, arithmetic) to be performed
directly over the ciphertexts stored at the database server.

a) Encryption Schemes: The Standard Encryption (STD)
scheme uses a probabilistic cipher such as AES in CBC
mode [4]. This scheme has the best security guarantees,
however, it does not support any operations over the generated
ciphertexts. Deterministic Encryption (DET) uses a determin­
istic cipher like AES in ECB mode [5] and ensures that if
two plaintexts are equal, then their respective ciphertexts are
also equal. This allows equality operations to be performed
at the database server. Order-preserving Encryption (OPE) [6]
guarantees that if a plaintext PI is greater than a plaintext
P2, the respective ciphertext Cl is greater than ciphertext C2.
As a result, both equality and order operations are possible
over encrypted data. Format-preserving Encryption (FPE) [7]
ensures that the ciphertexts maintain the size and type of the
plaintext, while some implementations of this scheme also
preserve the equality of ciphertexts. Homomorphic Encryption
(HOM) [8] enables arithmetic operations among ciphertexts,
while Searchable Encryption (SE) [9], [13] enables searching
for keywords in ciphertexts.

Some of these schemes leak information to an attacker
and hence provide weaker security guarantees. For example,
when using DET, an attacker can infer whether two ciphertexts
correspond to the same plaintext or not [2], [3].

b) Overview of Secure Databases: The previous encryp­
tion schemes are combined by secure database systems to
provide data confidentiality and privacy in cloud deployments.
As depicted in Figure 1, most of the current solutions consider
an honest-but-curious untrusted environment that can inspect

68

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

schemes. The encryption scheme with the best security guaran­
tees is in the outer layer while the inner layer holds the encryp­
tion scheme with the most functionality. SafeNoSQL is applied
to NoSQL databases and was developed with a modular design
in mind regarding the addition of new encryption schemes.
Each coluIIlll is protected with a single encryption scheme
that is chosen based on the type of computation, security and
performance required by operations over that coluIIlll.

Cipherbase [10] adds a trusted hardware module (TM) at
the untrusted site. The main idea is to use encryption schemes
that provide the best security guarantees while preserving
the necessary properties from the plaintext data. The TM is
responsible for performing database operations that cannot be
achieved through the cryptographic primitives.

The security and performance guarantees of these systems
hinge on a careful specification of the database schema and en­
cryption schemes. However, no system automates this crucial
step. We address this shortcoming with ATOCS.

B. Code Analysis Tools
Code analysis tools inspect applications' code for various

purposes such as detecting bugs, measuring code quality or
understanding the applications' functionality. In this paper, we
are interested in the application's interactions with the database
system. This allows narrowing the scope of the analysis and
hence enable a very efficient approach even for applications
with a large code base. We consider any application request
done to the database system as an interaction.

Regarding code analysis tools, these can either be dynamic
or static [11]. Dynamic analysis requires the program to run
against previously defined input values that cover the relevant
parts of the program. For this reason, dynamic analysis can
miss important behaviours generated by inputs that were not
accounted for. In static analysis, the program does not need to
be executed because only the application's code is analysed.
Since this approach does not rely on program inputs, it as­
sumes every possible execution path, hence fully covering the
program's logic. Given that dynamic analysis cannot explore
every path of an application, we restrict ourselves to static
analysis. In particular, we consider two distinct techniques:
Data Flow analysis and Symbolic Execution.

Data Flow analysis considers a graph that connects all the
possible paths between nodes, where each node represents
a program instruction [12]. The connections between nodes
represent the possible execution flow of information. The
graph is then used to see how values propagate throughout
the nodes. One disadvantage of this approach is the fact that
it considers every path between the nodes, even if they are
not feasible (without taking variable values into account). As
a result, Data Flow analysis can lead to false positives.

Conversely, Symbolic Execution distinguishes between fea­
sible and non feasible paths and only traverses the first, which
makes it more precise. Symbolic Execution assigns variables
to symbols instead of concrete values so that it considers every
possible path to be explored. When a branch occurs, the anal­
ysis splits to inspect each branch independently and at the end

69

~ ~-----:Module
~ Phase I I data

Fig. 2: ATOCS architecture and flow of requests.

of each branch the results are not merged but rather continue
as two different execution paths. In each step, the symbols
are updated with the result of the instruction performed or
branch taken. By doing so, this type of analysis is prone to
path explosion. This happens when there are many consecutive
branches or loops, making the analysis split several times
and greatly increasing the number of paths it has to explore.
Therefore, Symbolic Execution can be very complex and its
performance can quickly degrade in applications with large
code bases such as the ones we target. For this reason, in this
work, we rely on Data Flow analysis.

III. ATOCS

ATOCS needs to address the following challenges: i) identify
the database operations performed by applications (e.g., insert,
read, update or delete); ii) determine the type of computation
done at the coluIIllls being accessed by these operations (e.g.,
equality, order, sum, mean); iii) map the functionality require­
ments of each coluIIlll to the encryption schemes supported by
the secure database; and finally iv) output the corresponding
secure database schema and configuration.

Figure 2 provides an overview of ATOCS flow. The Info
Gather module, responsible for the Phase i-information
gathering, requires as inputs the application code and the target
database system, namely its API and the set of encryption
schemes. This is the only phase that requires input from users.

The Inspector module starts Phase 2 - Analysis by au­
tomatically gathering the interactions between the application
and the database. After this step, the Inspector sends the
application functions have any interaction with the database
(i.e., that call database operations), to the Code Analyser
module. By reducing the number of functions sent to the latter
module, we are improving the performance for the next phase.

The Code Analyser is responsible for determining the
database coluIIllls that are in fact accessed, and the type of
computation done over those coluIIllls. Finally, the previously
gathered requirements are sent to the Configurator mod­
ule, which starts Phase 3 - Configuration. By merging the in­
formation obtained from Phase 2 with the available encryption

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

schemes, provided in Phase 1, the Configurator generates
the final secure database schema and configurations. Next, we
describe each of the phases in more detail.

A. Phase 1 - Information gathering

This is the only phase that requires input from users. To
analyse the code of an application, the user has to provide
ATOCS full access to the application's source code and specify
the used database system. To be able to assess the interactions
with the database, ATOCS must know the database API.
However, it does not need the complete API but rather only the
requests that perform operations over database columns. For
example, a request to delete a database table is part of the API
but it does not perform any operation over a database column,
so it does not need to be considered by ATOCS. As another
example, a read operation that filters the database rows by the
value of a certain column (e.g., retrieve database rows where
column C has a value equal to V) needs to be considered.

ATOCS ships with a list of common encryption schemes and
their computational properties (i.e., equality, order, arithmetic
operations), which can be expanded by users as necessary.
Also, ATOCS warns the developer in case the provided en­
cryption schemes are not able to satisfy the application re­
quirements in terms of queries functionality (e.g., if a database
column requires an order property but there is no encryption
scheme listed that is capable of preserving this property).

B. Phase 2 - Analysis

After collecting the user's input, the Inspector analyses
the application's code and collects all the application functions
that call database operations as specified by the API. These
functions are sent to the Code Analyser module, that
analyses the application's code in order to identify the database
operations (e.g., insertion, read, update or delete) being called
in each function. Then, for each database operation, the
module also extracts the type of computation (e.g., equality,
order, arithmetic) done over different database columns. For
example, consider a database read operation that obtains a set
of rows ordered by the value of column C. ATOCS determines
the computation, which is an order comparison, then finds the
database column associated with it (in this case column C)
and creates a property stating that, when encrypted, column C
must preserve its original ordering. This methodology is used
for every interaction between the application and the database.
Note that it is possible for two different interactions to access
the same column C while performing operations that require
different properties (e.g., equality and order).

ATOCS'S analysis can distinguish which database columns
are actually being manipulated by the application and which
are not. As an example consider an application that inserts a
row with several columns while subsequent operations only
access and filter the value of a single column in that row. This
refinement is important because it allows suggesting a stronger
non-property preserving encryption scheme (e.g., STD) for the
columns that are not manipulated by the application.

70

The Code Analyser requires processing logic that is
dependent of the target database. This is achieved by our
plugin architecture which keeps most of the logic generic
and delegates the database specific logic to the plugin. The
plugin is specific for a given database system and its role
is to interpret the database operations found by the Code
Analyser. This way, the Code Analyser is responsible
for the generic application analysis, which is independent of
the database system being used, and the plugin is contacted
by it when database specific information is required.

1) Plugins: The database plugin is responsible for inter­
preting the database operations analysed by the Code Anal­
yser. The Code Analyser sends to the plugin the function
invocations that represent database interactions. From this, the
plugin determines the concrete operations being performed
(e.g., insert, filter), as it is aware of the database API. If
the values of the operands are required for the plugin to
understand on which columns the operations are performed,
then the plugin will query the Code Analyser to determine
these values. Thus, the plugin does not need to perform any
code analysis. It only queries the Code Analyser for the values
it requires to infer the database operations being performed and
the computational properties that must be preserved.

2) Data structure: ATOCS leverages the Soot
(https://github.com/soot-oss/soot) static analysis tool, at the
beginning of Phase 2 - Analysis, to analyse the application's
source code and to generate an intermediate representation
called EmpIe. This representation is an improved version of
Java byte code, containing all the classes of the application,
that is more amenable for program analysis. From this
representation Soot generates the method body graphs, builds
dependency graphs and constructs a class hierarchy. However,
Soot is not able to perform the Data Flow analysis itself, but
rather provides detailed information about the application's
dependencies and flow of data.

The Inspector queries the Soot dependency graph (Call
Graph) to obtain all the methods that contain a given database
interaction. The Call Graph contains all the invocations per­
formed by the application and knows in which method they are
located. As for the Code Analyser, it requires the method
graphs generated by Soot as well as the class hierarchy to
perform a more tailored analysis of each method. The method
graph contains all the method instructions (which are the
nodes) and the paths between them (the edges). The class
hierarchy is aware of the class dependencies of the application.

Soot contains a class called Value to represent variables,
constants, method invocations, etc. In ATOCS we introduce
the notion of ValueState. A ValueState is a class that contains
a Value object (Soot object), the scope method (the method
where this value resides) and the current state of the scope
method, alongside other information that might be useful
during the analysis phase. The state is in fact a list of the
method instructions that were analysed.

The main goal of the ValueState class is to encapsulate all
the required information (scope method, value, list of method
instructions, etc) about a certain value for each module to

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: HBase application example.
1 method doPut(String family, String qualifier, int value)
2 Table table = connection.getTable(TableName.valueOf("UserTable"));
3 Put P = new Put(Bytes.toBytes("rowl"));
4 p.addColumn(Bytes.toBytes(family), Bytes.toBytes(qualifier),

Bytes.toBytes(value));
5 table.putCp);
6 method doScan(String startRow, String stopRow)
7 I Table table = connection.getTable(TableName.valueOf("UserTable"));
8 Scan s = new ScanO;
9 applyFilter(s);

10 return table.scan(s);
11 method applyFilter(Scan s)
12 I Filter f = new SingleColumnValueFilter(Bytes.toBytes("UserInfo"),

Bytes.toBytes("Age"), CompareOp.GREATER, Bytes.toBytes(18));
13 s.setFilter(f);

operate. This is important to improve ATOCS'S performance
(since it does not need to analyse the same method more
than once) and to make the communication between the Code
Analyser and the database Plugins smoother.

3) Example: Consider the sample Java application in Al­
gorithm 1 that is using HBase as the underlying database. The
application is only accessing a single table, and it is inserting
data into the database in the doPut method, and retrieving
data in the doScan method. The full flow of operations is
detailed in the following section, so for now let us focus
on the doScan method (lines 6-10). When analysing this
method, the Code Analyser looks for database operations.
It finds on line 10 a scan operation which retrieves all
the rows that match the given criteria. Because it requires
specific database information to determine the requirements
of this operation, it contacts the HBase plugin. To do so, it
creates an InvokeExprState (which is a subclass of ValueState
that represents a method invocation, in this case the scan
method) and sends it to the database plugin. Notice that
the Code Analyser does no further investigation on this
method invocation, as it is delegated to ATOCS' HBase plugin.

To simplify the example, let us assume that the plugin has
already determined the table name where this operation is
being performed. The plugin now has to determine if there
is any filter operation applied by this scan (which is done by
invoking the setFil ter). It contacts the Code Analyser
and sends the scan ValueState for further investigation while
asking if any filter operation was applied (also sending the sig­
nature of the setFilter method). The Code Analyser
will received a ValueState representing the Scan object, which
in this case is a variable value (named s) and represented
by a LocalState. With only the state information present in
this LocalState, the Code Analyser is able to determine
that S is used as an argument in the method applyFilter
(line 9). If the Code Analyser only received the scan value
instead of the ValueState, it would need to analyse the doScan
method again in order to determine this. The applyFil ter
is then analysed and the setFilter invocation is found
in line 13. An InvokeExprState for this invocation is created
and sent back to the database plugin, which will inspect it to
determine the type of filter applied.

71

C. Phase 3 - Configuration

Phase 3 starts when the application's code analysis is com­
plete. This phase matches the requirements of each database
column with the most appropriate encryption scheme sup­
ported by the target database. The goal is to ensure that
the chosen encryption scheme supports the different types of
computation that may be performed over that database column.

In general, it is possible that multiple encryption schemes
are viable. For that reason, the user can order the encryption
schemes by preference (e.g., by the most secure or performant
ones). With this input information, ATOCS is able to generate
a database configuration based on the user's preferences.

With the information obtained from the analysis phase, the
Conf igurator module can also automatically infer possible
optimisations. For example, schemes such as OPE require a
significant amount of computational time for encrypting and
decrypting data when compared to STD or DET schemes [3].
For this reason, and in certain scenarios, it might make sense
to duplicate a column and encrypt one copy with OPE and
other with STD, for instance. Then, when a value encrypted
with OPE must be retrieved to the client, instead of decrypting
the OPE value, the STD one is decrypted instead. Such
optimisation trades additional storage space for a considerable
performance improvement. However, this optimisation is only
relevant if the column encrypted with OPE is retrieved by the
client, otherwise it is just wasting storage space. ATOCS is
able to detect these patterns and inform users about possible
optimisations, as further discussed in Section IV-B.

D. Implementation

ATOCS'S prototype is implemented in Java and targeted
towards the analysis of applications using the same pro­
gramming language. Although it is designed to be generic
and to support both SQL and NoSQL database systems, our
prototype only focuses on the latter. To add support for a new
database only requires writing a new plugin, which for NoSQL
databases is a matter of extending and adapting the plugins we
provide. Given the richness and complexity of SQL, writing a
plugin for a SQL database is more challenging, and which we
leave for future work. ATOCS supports the analysis of multiple
applications using the same database backend. It just requires
that all code bases are provided together so that the analysis
can span through all of them and produce an aggregated secure
schema and configuration. In addition, ATOCS can provide
support for the development pipeline of applications. Namely,
it can be used to analyse incremental code updates and to
validate the requirements with respect to the database schema.

1) Plugins: We implemented a plugin for HBase
(https://hbase.apache.org), a NoSQL database. HBase tables
are composed by rows that can have several columns and are
uniquely identified by a key, The HBase client API supports
insert/update (put), delete, read (get) and scan operations.
Also, filters can be applied to scan operations in order to only
bring rows whose columns match a specific condition (e.g.,
value of column C is greater than V).

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

Our implementation also supports a database plugin for
the SafeNoSQL [3] database. The motivation for supporting
both is the following. If the targeted application is using
SafeNoSQL, ATOCS can be used to properly configure the
database and define its schema. If the application is using a
non-secure database (HBase), developers can rely on ATOCS to
determine the schema and encryption schemes required by the
application and therefore assess what secure databases would
provide the needed features to fully support the application.

The implemented plugins have to extend an abstract class
DatabasePlugin, which has the necessary methods to connect
them to the other ATOCS components. The plugins receive
a database operation to analyse through the analyseDbInter­
action method. To obtain concrete values for the operation
arguments received, these can use the available methods
from the Code Analyser. Aside from this, the plugins
are responsible for sending to the Configurator all the
requirements inferred from the operations analysed. The lines
of code (LOCs) that must be written to implement a database
plugin depend on the dimension of the database API. The
HBase API, for example, is rather vast, mainly due to the
Filters that can be performed on the scan and get operations
(which will influence the properties that must be preserved
for each database column). Thus, the ATOCS'S HBase plugin
has around 1800 LOCs. The SafeNoSQL plugin (because
SafeNoSQL itself extends HBase) only requires more 18
LOCs to account for the operation that obtains a database
table, which is different in SafeNoSQL.

2) Inputs: ATOCS requires user input at Phase 1. This is
done via three distinct YAML files. In the first file, users
specify the directory containing the application's compiled
Java classes, the entry points of the application (i.e., the name
and package of the main methods) and the database system
being used. The second file is dedicated to the database API
and must specify the database interaction methods by stating
their name, declaring class and the type of operation they
correspond to (e.g., for a put operation in the HBase API,
we provide the name of the operation: put, the declaring
class: org.apache.hadoop.hbase.client.Table and state that this
invocation corresponds to the operation PUT). This file needs
to be built only once per supported database system. Finally,
a third YAML file contains the list of the encryption schemes,
to be considered by ATOCS analysis, ordered by the user's
preference. When two or more encryption schemes can be used
for a given column, ATOCS will consider the user's preferences
to select one of them. This file can be extended to specify
new encryption schemes supported by the underlying database
system by stating their preserved computational properties.

£. Flow of operations

We now illustrate ATOCS'S flow of execution by considering
the sample Java application depicted in Algorithm 1. The
application is inserting data into the database in the doPut
method and retrieving data in the doScan method.

The Inspector module gathers the Java methods that
contain HBase operations, namely doPut and doScan. Each

72

of these methods is passed to the Code Analyser module
that examines the method body, i.e., goes through every
instruction until it finds an HBase operation.

Put operation: During the analysis of the doPut method,
the Code Analyser pauses its analysis on line 5, when it
reaches HBase's put operation. Since this is an interaction
with the database that requires a specialised analysis, it is
sent to the HBase plugin. The plugin determines that this is
an insert operation and, as the next step, it needs to find on
what table this operation is being done. Since the plugin is
aware of the HBase API, it knows that the table name can
be consulted when the Table object is obtained by calling the
TableName.valueOf method.

Thus, the Table object is sent back to the Code Analyser
in order to get the value for the first argument of the
valueOf method. The Code Analyser keeps the history
of operations already visited and finds that the table name was
previously assigned (line 2). From this assignment operation,
it obtains the value for the TableName.valueOf method,
which is UserTable, and returns it back to the plugin.

The plugin is aware that a put operation requires checking
if the key being inserted already exists or not (i.e. equality),
while the columns do not require any sort of computation over
their values. This way, the plugin defines that the keys for the
table named UserTable must preserve equality.

Scan operation: For the doScan method, the Code
Analyser finds an HBase's scan operation at line 10 and
sends this interaction to the plugin. The table where the scan
is being applied is discovered in a similar fashion to the one
described for the put operation. A scan can be restricted to
a range of rows or it can be a full scan across all the rows
of a table. If a range is specified, i.e., a start key and an end
key, the chosen encryption schemes must preserve the order
between keys. For a full scan, the relative order between rows
does not need to be preserved.

The sample application we are considering is doing a full
scan with a filter operation (line 13). This filter is defining
that the client will only receive scanned rows whose Age
column has a value higher than 18. The HBase plugin is
aware that a scan operation may define filters so it queries the
Code Analyser to determine if any filters were assigned
to this scan by sending the Scan object and the setFilter
method. Although the setFilter on the scan object is present
in another method (line 11, method applyFilter), the
Code Analyser is able to track it by following the code
interactions with the Scan object.

After reporting to the HBase plugin that the scan operation
contains a filter, the plugin sends another query to the Code
Analyser in order to find the three arguments of the filter
constructor (line 12). Each value is then sent back to the
HBase plugin. The first two arguments describe the table
(UserTable) and column (Age) where the filter is going to
be applied. The third argument shows that an order comparison
(GREATER) is being done. This way, the plugin defines that
the column Age of table UserTable must preserve order.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

TABLE II: ATOCS execution time for different applications.

2HBaseTinkerGraph, https://github.com/dpv91788/HBaseTinkerGraph.
3TinkerPop, Blueprints, https://github.com/tinkerpop/blueprints
4HBase in action, TwitBase, https://github.com/hbaseinaction/twitbase.
5Yahoo, YCSB, https://github.com/brianfrankcooper/YCSB

A. Efficiency and Accuracy

We start by assessing ATOCS'S efficiency by measuring the
time it takes to analyse the codebase of four applications. The
first is a synthetic HBase application developed by us. The
other three are real applications using HBase as the storage
backend. HBaseTinkerGraph2 is an implementation of a Tin­
kerPop graph3. Twitbase4 is a simplified clone of the Twitter
social network. Yahoo! Cloud Serving Benchmark (YCSB)5
is a NoSQL database benchmark, which we configured with
the workload used in SafeNoSQL [3].

We chose the latter three applications because they are
open-source and have disparate codebase sizes and complexity.
ATOCS is able to perform all the analysis in less than 45
seconds, which is a very good value when compared to
the time a programmer would take to do the same analysis
manually - which is prone to be incomplete andJor incorrect
(Table II). Given these results, we expect ATOCS to also be
efficient for applications with more LoC which, nevertheless,
is an interesting future work task.

Next, we focus on assessing the accuracy of ATOCS i.e.,
the extent to which it can identify the interactions with the

The analysis of an HBase get operation is similar to the
one conducted for the scan operation, while the analysis
of a delete operation is similar to the one conducted for
the put operation. When the analysis phase is completed,
the Configurator module receives the information about
what table properties must be ensured and combines this
information with the available encryption schemes and the
properties that these preserve. In this example, keys must
preserve equality, thus requiring a deterministic encryption
scheme (e.g., DET), while the column Age must preserve
order, thus requiring an order-preserving encryption scheme
(e.g., OPE). If the table (UserTable) has other columns that
do not need to preserve any processing properties, these are
assigned with a probabilistic encryption scheme (e.g., STD).

IV. EVALUATION

ATOCS'S evaluation is focused on two different aspects:
i) ATOCS'S accuracy and efficiency when analysing large
codebases, and ii) the impact on performance of the chosen
configurations. All experiments were performed on a cluster
of servers equipped with an Intel Xeon CPU with 8 cores at
2.13GHz, 40GB of RAM and a 900GB HDD disk. All the
results are the average of five independent runs.

TABLE III: TwitBase interactions with the database system.

Required ATOCSTable I Column Operation Property Encryption output
users put Equality

full scan None DET DETkeys get Equality
twits put Equality

range scan Order OPE OPEkeys get Equality
folows put Equality OPE OPEkeys range scan Order

folowedBy put Equality OPE OPEkeys range scan Order
users regex Partial SE SEinfo:password filter Comparison
users increment Algebraic HOM HOMinfo:tweet count Operation

database and infer the appropriate encryption schemes. Also,
we performed a manual analysis which consisted on carefully
reading the code of each application, finding the operations
issued to the database system and determining which database
columns were affected by each operation - similarly to what
any other developer would have to do in the absence of ATOCS.
With this information, an encryption scheme was chosen for
each database column that would allow all the operations
found to be feasible. We considered the following encryption
schemes: STD, DET, OPE, FPE, HOM and SE. Results are
presented in Table III for TwitBase.

The Table/Column identifies the name of the database table
and the respective database column, the Operation identifies
the set of operations done over that column, and the Property
identifies the property required by the encryption scheme.
Finally, columns Required Encryption and ATOCS Output
identify the encryption scheme selected by us manually and
by ATOCS, respectively. For the cases where there are no
property-preserving needs over a given database column, i.e.
no operation is done over that column, ATOCS defaults to
the most secure encryption scheme available (i.e., STD). We
omitted these columns from the table to improve its legibility
(there are 8 columns in this situation for Twitbase).

As it is possible to observe, despite the application's
large codebase and complexity, ATOCS was able to deter­
mine the correct encryption scheme to be used, matching
our manual configuration. The same results were found for
the other applications, with the exception of one column
for the YCSB application (Appointments:Date) where ATOCS
suggested OPE/STD (i.e. OPE plus STD) and the manual
analysis suggested OPE. This difference is discussed next.

B. Performance Optimisations

As previously explained in Section III-C, SafeNoSQL
adopts a ciphertext duplication strategy where each database
column encrypted with OPE is accompanied by the same value
protected with STD. This is done because the decryption time
for the STD encryption scheme is considerably faster than
the one for OPE. However, this optimisation, and the extra
storage space it requires, is only worthwhile if the column
encrypted with OPE is indeed sent back and decrypted at

40.67 ± 0.66

44.49 ± 0.40

36.41 ± 0.43

41.96 ± 0.24

Execution Time (sec)

_12.5K

Lines of Code

YCSB
Twitbase

Demo App
Application

HBaseTinkerGraph

73

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Impact of SafeNoSQL OPE optimisation.

#
%OPE/ OPE Throughput Total DB size
%STD Optimisation (op/min) Op (MB)

1 0%/100% On 33.93 ± 2.89 1968 79.90
2 1%/99% On 32.77 ± 2.99 1952 79.90
3 100%/0% On 27.50 ± 2.96 1636 79.90
4 0%/100% Off 33.69 ± 3.33 1951 74.80
5 1%/99% Off 7.70 ± 13.92 459 74.80
6 100%/0% Off 0.03 ± 3.33 2 74.80

the client premises. Therefore, after analysing the application
code, ATOCS only suggests this optimisation when it infers
that the client can potentially read the OPE column.

To showcase the impact on enabling or disabling the previ­
ous optimisation, we deployed the YCSB application with the
SafeNoSQL database in 6 servers in our cluster: one server
holds the YCSB application and SafeNoSQL client, another
server holds the HBase Master and the remaining 4 servers
hold an HBase RegionServer each (SafeNoSQL uses a Vanilla
HBase cluster deployment as the backend).

We performed distinct experiments resulting from the com­
bination of enabling/disabling the OPE optimisation discussed
above and the percentage of times that the same OPE column
is retrieved by the client. Each experiment consists of a scan­
only workload that runs for one hour. We ran half of the tests
with the optimisation enabled and the other half with the op­
timisation disabled. For each configuration, we measured the
throughput (op/min), the total number of operations performed
and the database size (MB).

As depicted in Table IV, it is clear that when the application
does not read any OPE columns (experiments 1 and 4) then the
optimisation brings no throughput benefits (both experiments
achieve approximately 33 operations/minute) and the total
number of operations performed is very similar as the client
does not need to pay the cost of decrypting an OPE cipher.

With the optimisation enabled, the throughput value is very
similar for all tests. As described before, with the optimisation
enabled the system duplicates the OPE columns and encrypts
the same value with STD. Due to this, in tests 1 to 3, the
system is only decrypting STD values at the client and hence
obtaining similar performance results.

However, even with a small percentage of OPE columns, the
throughput with the optimisation disabled greatly decreases
when compared to the test with the optimisation enabled.
As an example, for the tests where only 1% of the columns
obtained are encrypted with OPE, the throughput decreases
from 32.77 operations/minute to 7.70 operations/minute (tests
2 and 5, respectively). This leads us to conclude that, for all
tests where at least 1% of the columns obtained are using
OPE, the optimisation results in high performance gains.

The setup using the optimisation in Table IV (experiments
1 to 3) occupies additional storage space for the database
(79.9 versus 74.8 MB). Although this may not seem like a
big discrepancy, this size would be greater if one considers a
large database with several columns using OPE.

74

V. CONCLUSION

This paper presents ATOCS, a framework that automates
the schema configuration of secure NoSQL database systems.
As applications become more complex and need to address
data security, privacy and compliance concerns, the process of
selecting the most appropriate encryption schemes becomes
increasingly difficult, time-consuming and error prone.

ATOCS is able to analyse applications with large codebases
in a few dozens of seconds and suggest the appropriate set of
encryption schemes without requiring the manual labour of an
expert programmer. Moreover, the detailed analysis performed
by ATOCS allows it to suggest possible optimisations to the
application and database backend.

We believe the framework proposed in this paper opens
the door to several interesting research directions, such as the
addition of a new plugin that supports SQL databases. Aside
from this, while the detailed static analysis can spot some
optimisations, enriching the analysis with information about
the workload such as the relative frequency of operations over
a column could result in fine grained optimisations that explore
different performance, security, and resource usage trade­
offs. A trace analysis could also be used to provide ATOCS
with dynamically obtained inputs, which would improve the
accuracy of the framework.

Acknowledgements: Work supported by national funds
through FCT, Funda(,fao para a Ciencia e a Tecnologia,
under projects Angainor (LISBOA-OI-0145-FEDER-031456)
and UIDB/5002112020, and by project AIDA (POCI-Ol­
0247-FEDER-045907), co-financed by the European Regional
Development Fund (ERDF) through the COMPETE 2020
Program and by FCT under CMU Portugal. We thank our
shepherd Marco Vieira for his help on improving the paper.

REFERENCES
[1] Reinsel et aI., The Digitization of the World From Edge to Core, tech.

rep., International Data Corporation, 11 2018.
[2] Popa et al. CryptDB: protecting confidentiality with encrypted query

processing. SOSP, 2011.
[3] Macedo et al. A practical framework for privacy-preserving NoSQL

databases. In SRDS, 2017.
[4] Pub, N. F. Specification for the Advanced Encryption Standard. In FIPS

197, 2001
[5] Dworkin, M. Recommendation for block cipher modes of operation.

methods and techniques. In NIST-SP-800-38A
[6] Agrawal et al. Order preserving encryption for numeric data. In ACM

SIGMOD 2004.
[7] Black et al. Ciphers with arbitrary finite domains. In RSA Conference,

2002.
[8] Fontaine et al. A survey of homomorphic encryption for nonspecialists.

IN EURASIP JIS, 2007.
[9] Song et al. Practical techniques for searches on encrypted data. In SSP

2000.
[10] Arasu et al. Orthogonal Security with Cipherbase. In CIDR, 2013.
[11] Baldoni et al. A survey of symbolic execution techniques. In ACM

CSUR,2018.
[12] Lam et al. The Soot framework for Java program analysis: a retrospec­

tive. In CETUS 2011.
[13] Salehi et al. Reseed: Regular expression search over encrypted data in

the cloud. In CLOUD 2014.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 26,2025 at 16:13:37 UTC from IEEE Xplore. Restrictions apply.

