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Abstract—With the emergence of new data-centric applications
(e.g., data analytics, artificial intelligence) and larger quantities of
data to manage, both academia and industry have been actively
proposing novel optimizations to improve the speed and reduce
costs of current storage solutions. While existing benchmarking
frameworks are able to efficiently assess the performance benefits
of such optimizations, we argue that these can be improved for
evaluating the dependability and reliability of storage systems.

Therefore we propose ACHILLESBENCI—ﬁ a novel benchmark-
ing framework for assessing the reliability and performance
of storage systems. ACHILLESBENCH supports the injection of
several types of faults (i.e., data corruption, I/O operations
timeouts, and errors) while assessing performance across local
storage systems exposing commonly used interfaces (i.e., block
device, POSIX) and resorting to complex optimizations such as
data deduplication.

Our preliminary experimental results corroborate that
ACHILLESBENCH’s open-source benchmark is indeed able to
combine stress I/O workloads with fault-injection in order to
assess simultaneously the reliability and performance of different
storage systems and optimizations.

I. INTRODUCTION

Storage systems are essential to persist and ensure fast
access to applications’ data. These are typically composed
of storage devices, such as Hard Disk Drives (HDDs) or
Solid State Drives (SSDs), and by additional software layers
including different optimizations like caching, deduplication,
redundancy, for increased performance, storage space reduc-
tion, and reliability purposes [1]], [2]].

Several studies show that failures can occur frequently at
these systems and may lead to downtime and data loss [3]], [4].
Even though current solutions provide fault-tolerant designs,
it is important to evaluate how reliable these are when faced
with different kinds of faults and the impact that these may
have on the system’s performance and recovery mechanisms.

This paper focuses on evaluating storage performance while
facing faults that may occur at the block device layer due to
errors on the software managing it or the underlying storage
devices supporting it (e.g., HDD or SSD disks). We choose
block devices given their high popularity and widespread
usage in traditional I/O stacks [5]]. Namely, block devices can
be accessed directly by applications and file systems (e.g.,
Ext4, ZFS). Also, the goal of the paper is to understand how
faults propagate (e.g., number of corrupted blocks or files),
and the impact these have (e.g., in I/O throughput or latency),
for applications using directly the block device or through a
file system mounted on top of it.
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Current fault-injection benchmarking tools can be classified
into two major groups [3]]. The first includes simulation-based
approaches that resort to high-level models of storage systems
and corresponding optimizations, that mimic the parameters
found in real world deployments [6]—[8]]. While these tools are
interesting to evaluate an abstract representation of a storage
system under different types and distributions of faults, these
require accurate input from users when building the model to
ensure that it provides an accurate representation of software
and hardware stacks found in real world deployments.

The second group includes prototype-based fault-injection
benchmarks that aim at evaluating storage solutions in real
world deployments [7]], [9]-[19]]. These benchmarks inject
faults at the System Under Testing (SUT) hardware or software
layers while monitoring and observing the fault’s impact on
reliability. Therefore, these types of solutions can be further
divided into two sub-groups. The first, targets the hardware
layer for fault-injection which can be a costly task, as injecting
failures at the hardware level can be more complex and even
damage the hardware being assessed [3]], [20]. This is why, in
recent years, researchers began to explore cheaper and more
flexible software-based fault-injection approaches [3|.

This paper proposes ACHILLESBENCH, a prototype- and
software-based (i.e., independent of underlying hardware)
fault-injection benchmark for local storage systems. Briefly,
and unlike previous work, our solution is designed to support
the evaluation of realistic storage deployments when sub-
jected to different types of failures at the block device layer.
Moreover, ACHILLESBENCH aims at assessing the impact of
faults in both the performance and reliability of SUTs that
resort to commonly used storage interfaces, namely file system
(POSIX) and block device APIs. In more detail, the paper
provides the following contributions:

o ACHILLESBENCH supports the injection of several types

of faults, namely: data corruption, I/O requests delays,
and I/O errors. This is possible by intercepting I/O
requests from the SUT to the underlying block device
layer and injecting these different faults at run time.

o The proposed design enables the evaluation of appli-
cations that use directly a block device or, indirectly,
through a POSIX file system. The support for the latter
interface is challenging since it requires knowing how
failures injected at the block device layer propagate to
the file system layer (e.g., which file(s) are affected by
the corruption of a given block at the storage backend).
This is made possible due to a novel content-based fault-



injection algorithm proposed in the paper.

o Furthermore, we show that the previous content-based
algorithm is valuable for assessing the reliability and
performance of other storage optimizations. Namely, we
showcase this benchmark’s feature for storage systems
contemplating data deduplication, a widely used tech-
nique to reduce redundant data at storage solutions.

o ACHILLESBENCH’s open-source prototype is built on top
of the DEDISBench benchmark, while leveraging the I/O
workloads, integrity checker, and performance assessment
mechanisms provided by it. Also, our prototype resorts
to the BDUS — block-device in user space framework —
for implementing the proposed fault-injection features.

e Our preliminary evaluation, contemplating experiments
on a raw block device, the VDO deduplication solution
[21] and the Ext4 file system, shows that ACHILLES-
BENCH is able to simultaneously evaluate the perfor-
mance (i.e., stress the evaluated system in terms of I/O
load) and reliability (i.e., inject different faults) of the
different SUTs. Moreover, the results highlight the impact
of failures, and consequently, the need for ACHILLES-
BENCH, when deploying storage optimizations such as
deduplication, where a single failure (i.e., on a single
block) may lead to the corruption of large quantities of
data to the application [4].

II. BACKGROUND AND RELATED WORK

Three main categories of faults are typically found in local
storage mediums, namely, whole disk failures, Latent Section
Errors (LSEs), and Undetected Disk Errors (UDEs). The last
two are the most frequent in modern storage systems [22]].

LSEs refer to unreachable device sectors that cannot be read
or written when a given application accesses them. UDEs,
unlike LSEs, can not be repaired by the disk and are only
detectable when a read is issued for the affected sector [4].

All these errors have an important aspect in common.
Namely, when these occur, the block-device driver accessing
(e.g., reading) the storage medium will receive an I/O error
response (LSEs) or corrupted data (UDEs). Therefore, the
software managing this driver, or the software running on top
of it (e.g., application, file system), must include appropriate
fault-tolerant mechanisms (e.g., RAID, replications, erasure
coding) to handle these failures and avoid problems such as
performance degradation or even data loss [4], [22]. Besides
that, these fault-tolerant mechanisms must be validated before
being deployed in production, which has motivated the emer-
gence of different fault-injection benchmarking tools.

A. Related work

Current fault injection tools can be classified as simulation-
or prototype-based, while the latter can be further divided into
hardware- and software-based.

Simulation- [|6]—[8]] and hardware-based [[14]-[16] tools are
orthogonal to our solution. Our objective is to develop a
software-based (i.e., independent of the underlying hardware)
benchmark that assesses the performance and reliability of

storage systems while injecting faults at run time, and to obtain
reproducible results.

Software-based: Recently, researchers have been shifting
towards software-based fault injection tools due to their lower
complexity, ease of development and use [3]. Examples of
such frameworks are depicted in Table [, which also shows the
components (i.e., CPU, RAM, Network, Storage) that can be
assessed by these frameworks with fault-injection techniques.

Tool ‘ CPU ‘ RAM ‘ Net Disk
[17], [230-[28] | - - - yes
B foj - yes - -
o, (11 yes yes yes -
L [13] yes yes - yes
7[19],7[29] yes yes - -
712], [18], [30] | yes yes yes -

TABLE I: Overview of software-based fault-injection tools.

Most tools support fault injection for local storage systems
and evaluate the impact of faults at run time [[13|], [[17]], [27]], or
at the offline recovery mechanisms [23]-[26]], [28]. Although
both approaches inject faults at run time, the first group
assumes that the system recovers from faults continuously,
assessing the SUT only when the experimental workload is
completed. The second group pauses the SUT to impose
an offline recovery process, assessing the SUT state after
the recovery process. We focus on evaluating how the SUT
performs at run time when facing faults that, if not handled
correctly, turn into failures or, even worse, errors or crashes.

[13], [[17]], [27] are able to inject faults in specific stor-
age systems at runtime. However, the first solution requires
the virtualized Emulab testbed, the second focuses only on
corruption-based faults and requires specific hardware environ-
ment for running the targeted SUT, while the third is limited
to SCSI devices.

ACHILLESBENCH provides a fault-injection and perfor-
mance assessment framework for different storage systems
without requiring them to run on a specific environment or
hardware. The main difference between ACHILLESBENCH and
these three solutions is provided by our novel content-aware
fault-injection mechanism. Namely, this new feature enables
users to inject faults at specific and critical points of I/O
workloads. For example, it becomes possible to target specific
blocks of a given file or highly duplicated blocks at a given
storage backend, which is key to better assess fault-tolerant
mechanisms of current file systems and storage optimizations
(e.g., data deduplication).

III. ACHILLESBENCH’S DESIGN AND IMPLEMENTATION

ACHILLESBENCH provides a Linux-based benchmarking
framework to simultaneously evaluate the performance and
reliability of storage systems. The proposed solution is appli-
cable to any Linux-based machine supporting in-kernel block
devices or file systems that use block devices as the underlying
storage layer. As design principles, fault-injection is conducted
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Fig. 1: ACHILLESBENCH’s architecture. Blue boxes corre-
spond to contributions of the paper.

at the block device layer and should be transparent to the SUT,
thus not requiring any modifications to its source code or mode
of operation. Also, the supported I/O workloads must consider
both block device and file system-oriented interfaces to enable
the validation of a wider range of storage solutions. Examples
of SUTs that can be validated with ACHILLESBENCH include
block-based middleware solutions residing on top of block
devices and providing features such as data deduplication, or
even file systems such as Ext4.

Figure (1| depicts the main architecture for ACHILLES-
BENCH. The Benchmark component, residing at the top of
the testing software stack, is responsible for mimicking the
behavior of an application, namely, the storage I/O operations
that a real application would issue to the SUT. Also, it is
responsible for injecting faults on some of these requests to
validate the SUT’s fault-tolerant capabilities.

The previous faults cannot be injected directly at the I/O
operations being sent from the Benchmark to the SUT (1), as
one expects these to manifest only at the underlying block
device. Therefore, ACHILLESBENCH contemplates a Fault
Injector that intercepts I/O operations being issued by the
SUT to the block device (2) and, based on user-defined
I/0 workloads and fault-injection configurations, decides what
faults should be applied to what requests.

For example, the Fault Injector may force the corruption
of a given data block, by intercepting the corresponding write
request and writing different content (with the same size) to
the block device (3), that is then persisted at the local disk (4).
Note that the response for this request then follows the reverse
path, being acknowledged back to the SUT and Benchmark
without showing any visible error (5 to 8). However, if later,
the Benchmark checks the integrity of written data through
the integrity checker, one can validate if the SUT detects data
corruption or not (i.e., if it retrieves the correct content back
to the benchmark).

As another example, the Fault Injector may intercept and
delay a read I/O request issued by the SUT, while the Bench-
mark can then assess the performance impact of this type of

error for the I/O workload being tested.

A. Benchmark

The Benchmark component is based on DEDISbench [1]],
an open-source synthetic benchmark for storage systems, and
leverages the following features:

« Support for POSIX and block-based storage interfaces;

o Workloads with different I/O access patterns (e.g., se-
quential, random) and operation types (i.e., read, write);

o Write operations follow a realistic content distribution,
thus mimicking redundant content found at real storage
systems while enabling a more accurate evaluation of
storage optimizations such as data deduplication;

« Monitoring and collection of SUT’s performance statis-
tics such as I/O throughput and latency.

« Data integrity validation to ensure that the benchmark’s
write workloads are persisted correctly at the SUT.

To support fault-injection workloads, our work extends
DEDISbench by proposing two main changes. Firstly, more
configuration parameters are added to the definition of I/O
workloads so that users can also specify the type of faults
(e.g., /O corruption, error, delay); when to inject these faults;
the targeted I/O operation (e.g., write or read); if the fault
is persistent or transient; and the block that will be affected
by the fault. This configuration is defined by the user in a
yaml file and it is loaded before the benchmarking process.
This specification allows us to restrict variability and precisely
control which blocks are faulty using the different access and
I/O patterns. Additionally, with the resources DEDISbench
offers, we can reproduce the same workload with minimal
randomness, guarantying the same written content and faulty
blocks. Secondly, DEDISbench is modified to communicate
these fault parameters to a new Fault Injector component,
which is described next.

B. Fault Injector

The Fault Injector is responsible for intercepting and medi-
ating I/O requests, and corresponding responses, between the
SUT and the underlying block-device. Also, it must inject the
faults specified by the Benchmark’s 1/O workloads. This is
achieved with three main modules:

The Configuration Handler receives information from the
Benchmark component stating the types of faults to be injected
and the I/O requests that must be targeted by these.

The Interceptor module intercepts I/O operations at kernel
space and redirects these to user-space to be processed syn-
chronously. Requests are intercepted at the block granularity
along with their content as well as information about their type
(read/write), size and offseﬂ

Then, the Fault Handler bridges the two previous modules
and is responsible for checking each intercepted I/O operation,
injecting a fault if desired, and submitting requests to the un-
derlying block device. Note that the responses from submitted
operations are then received by the Fault Handler, passed back

2The position at the block device where a request is going to be done.



to the Interceptor, forwarded to the SUT, and, finally, passed
back to the Benchmark.
Our current design supports three main types of faults:

1) Bit flip: Flips a bit of the block’s content before being
written at the underlying block device or read by the ap-
plication [22]-[24], [27]. Our algorithm flips the rightest
bit of the first byte of a block, thus corrupting data.

2) Medium error: Makes a given block inaccessible, thus
returning an I/O error back to the SUT when reading or
writing such block [22], [27].

3) Slow disk: Delays a write or read operation by X
millisecond to a given block [17].

C. Selecting I/0 requests for fault-injection

The Fault Handler must be able to distinguish what I/O
requests are intended for fault-injection and what requests are
just forwarded to the underlying device without any changes
(regular non-faulty operations). Our current solutions support
two complementary solutions.

The first follows an offset-based approach meaning that a
given fault is only injected for I/O requests being issued at
a specific offset of the underlying block device. In this case,
the Fault Handler just needs to match the offset and operation
type (read/write) of intercepted requests with the fault rules
kept at the Configuration Handler.

The second approach is content-based and ensures that the
Fault Handler only injects a given fault for I/O operations
manipulating blocks with specific content. The module first
divides the intercepted I/O request’s contenﬂ into fixed size
blocks, computes a hash sum for each block and, then, checks
the Configuration Handler for faults for those given hash sums
(content summaries). If a matching block is found, the fault is
applied to the full I/O request. In the case of a corruption fault
(bit flip), only the content of the matching block is targeted.

Note that fault-injection rules stored at the Configuration
Handler can specify either persistent or transient faults. There-
fore, if an offset-based rule is defined to be transient, it is only
enforced for the first corresponding I/O request. In terms of
applicability, the offset-based approach is useful for scenarios
where users know the offset at the block device that should be
compromised. We next detail two scenarios where using the
content-based approach can be more useful.

Starting with the case where a file system is the SUT, when
a file is being written by the Benchmark, it is impossible to
know the exact offset where the file’s blocks will end up at the
underlying block device. But, since our framework is based
on DEDISbench and, therefore, it supports realistic content
generation for written blocks, it becomes possible to track the
content of a specific file’s block at the block device. Namely,
the user can specify a fault injection rule for corrupting the
block being written at offset X of file A. Internally, since
the Benchmark knows a priori the content that is going to
be written for that file’s block, it just needs to calculate

3The delay parameter is defined by users.
“4For read operations it is the I/O response’s content.

the corresponding hash sum, transparently update the fault
policy to corrupt a block with hash sum H, send it to the
Configuration Handler, and then issue the SUT’s I/O request.

Another interesting feature of basing our framework in
DEDISbench is that it has access to other runtime statistics,
namely, the number of times that a given content (hash sum)
is being written to the SUT during the experiments (dupli-
cate blocks). Therefore, with the content-based algorithm, it
becomes straightforward to support new user policies that,
for instance, corrupt the block with the highest number of
duplicates. Again, internally, the Benchmark translates this
rule into a concrete hash sum that is sent to the Configuration
Handler. To the best of our knowledge, this is a novel feature
provided by our work that can be very valuable to assess
the dependability of data deduplication. Briefly, block-based
deduplication systems reduce redundant storage space by
transparently pointing several write requests (logical blocks),
operating over duplicate content, to a single physical block at
the underlying block device [31]. However, the corruption of
a physical block can lead to the loss of several logical blocks
(or files) sharing the same content.

D. Implementation

ACHILLESBENCH is implemented in C and the Benchmark
component is based on DEDISBench v1.1.0 [32]. BDUS
v0.0.9 [33], [34], a framework for implementing block devices
in user-space, is used to implement the I/O interception and
processing logics of the Fault Injector. The communication
between the Benchmark and Fault Injector is done with Unix
Domain Sockets. Hash sums are calculated by resorting to the
XXH3_128 hashing algorithm v0.8.0 [35]], while the block size
is configurable by users.

IV. EXPERIMENTAL METHODOLOGY

Our preliminary experimental evaluation aims at validating
the following research questions:

o Is ACHILLESBENCH capable of assessing simultaneously
the performance and reliability of storage systems?

« What is the overhead of fault-injection on the bench-
mark’s performance?

o Is ACHILLESBENCH able to support different SUTs and
storage interfaces?

o What is the impact of faults, in terms of performance and
reliability, for the different SUTs?

To answer these questions we devised the following exper-
imental methodology.

Experimental environment. Experiments ran on identical
servers equipped with one Intel(R) Core(TM) i5-9500 CPU (6
cores), 16GB of RAM, an NVMe SSD disk with 250 GB, and
a WDC HDD disk with 500 GB. Software-wise, servers ran
Ubuntu 20.04 LTS with kernel 5.4.0-71. To avoid interference,
the NVMe disk was used to support the experimental work-
loads, while another HDD disk was used to run the operating
system and to store benchmarking logs and collected metrics.



I/O workloads. The benchmark was configured to run
sequential write tests, with a single process and a block size
of 4KiB. Also, each test wrote 64 GiBs to the NVMe device.

We used the DEDISbench’s dist_kernels distribution for
realistic content generation. After each experiment, a full
integrity check was done for the written content to check for
potential data corruption.

Fault-injection workloads. For the experiments consider-
ing faults, these were injected at the last block, chosen at
runtime, of each GiB written to the SUT by our benchmark.
Therefore, each experiment includes the injection of 64 faults
and the overhead of choosing which block is being injected
with the fault.

Three types of faults were addressed in our evaluation,
namely, bit-flips, medium errors, and slow disk faults. The
latter type was configured to slow I/O requests by 1 second.

Collected metrics. From ACHILLESBENCH, we collected
the SUT’s I/O throughput and latency to evaluate per-
formance, as well as the number of faults injected and
the corresponding number of failures detecte(ﬂ to assess
reliability. Also, Pidstat v12.2.0 [36] was used to observe CPU
and memory usage at the servers running the experiments. The
values shown for each experiment in the next section refer to
the average and standard deviation of 5 independent runs.

Systems We considered three different SUTs:

« Bdev. A standard block device using the NVMe disk as
storage backend.

o Ext4. An Ext4 file system, that only journals metadata
(data=ordered), mounted on top of the previous block
device.

e VDO. The Virtual Data Optimizer block-based dedu-
plication system (version 6.2.5.11) [36], using also the
block device. VDO was configured with asynchronous
deduplication, a logical storage size of 700 GiB (as
suggested by the documentation), and the compression
feature was disabled.

Note that neither these systems nor our deployments con-

sider fault-tolerance mechanisms. The goal of this preliminary
evaluation is to measure the impact of faults without them.

V. EXPERIMENTAL RESULTS

We now show and discuss the results obtained for the
different experiments.

A. Throughput and latency analysis

Table [[I] depicts the I/O throughput and latency for the three
SUTs (Bdev, Ext4, and VDO) when assessed with different
types of failures and configurations.

The Bdev-baseline setup corresponds to a baseline deploy-
ment of our benchmark without any fault-injection mecha-
nisms. The reason for evaluating this setup is that it performs
similarly to the original DEDISbench benchmark and, thus,
can be used to assess the performance impact of ACHILLES-
BENCH’s fault-injection mechanisms, which are only used at
the other setups.

SFailures are reported at the integrity checking phase.

l Setup Fault Type Throughput (MiB/s)  Latency (ms) ‘
Bdev baseline 465.39 4+ 2.23 0.005 £ 0
Bdev bit flip (O) 458.03 & 3.51 0.005 £ 0
Bdev bit flip (C) 462.45 +1.68 0.005 £ 0
Bdev  medium error (O) 450.59 +11.12 0.005+0
Bdev slow disk (O) 94.82 +0.18 0.036 =0
Ext4 bit flip (C) 99.34 +0.49 0.037£0
VDO bit flip (C) 38.81 +0.36 0.097 £ 0.001
VDO bit flip (top C) 44.14+0.33 0.086 £ 0.001
VDO  bit flip (unique C) 44.33 £0.40 0.085 £ 0.001

TABLE 1II: Throughput and latency for the different SUTSs
(Bdev, Ext4 and VDO), types of faults (bit flip, medium error,
and slow disk) and for the offset- (O) and content-based (C)
algorithms.

The Bdev-bitflip (O) setup does bit flip fault injection by
following an offset-based approach, while the Bdev-bitflip (C)
follows our novel content-based algorithm. Nonetheless, these
two setups inject faults by following the same rule, i.e., at the
last block of each GiB written by our benchmark.

When comparing the throughput of the baseline setup
(465.39 MiB/s), with the Bdev-bitflip (O) (458.03 MiB/s)
and Bdev-bitflip (C) (462 MiB/s) setups, we can see that the
difference is minimal. The same is true for latency results, thus
showing that the provided fault-injection mechanisms and the
offset- and content-based algorithms perform similarly.

Before analyzing the next results, it is important to mention
that the offset-based algorithm (O) was used for all the remain-
ing experiments with the Bdev system, while the content-based
algorithm (C) was used for the experiments with the Ext4
and VDO solutions. The reason for this choice was previously
explained in Section

Moreover, for VDO, we have considered three different
fault-injections scenarios. The first (VDO-bitflip (C)) follows
an identical approach to the previously mentioned experiments
since a bit flip fault is injected at the last block of each GiB
written by our benchmark. The second (VDO-bitflip (top C))
injects a bit flip fault, at the end of every GiB written by
the benchmark, but this fault is targeted towards a stored
block with a high number of duplicates. The third scenario
(VDO-bitflip (unique C)) injects a bit flip fault, at the end of
every GiB written by the benchmark, but this fault is targeted
towards a stored block with unique content. As discussed next,
these different scenarios are important to validate the reliability
of VDO’s data deduplication feature.

Going back into the performance results, the Bdev-medium
error (0) (450.59 MiB/s) and Bdev-bitflip (O) (458.03 MiB/s)
setups exhibit similar performance, with a small drop in the
average throughput and increase in variance for the former.

More interestingly, when a slow disk fault (Bdev-slow disk
(O) is being used instead, there is a visible decrease in
throughput (94.82 MiB/s). Of course, this decrease is related
with the delay configured for the corresponding fault (1 second
in our experiments). Nevertheless, it is important to note
that this significant performance drop happens even when the
benchmark is only delaying 64 1/O requests of the full storage



Setup Fault Type Injected faults Reported failures ‘
Bdev baseline 0 0

Bdev bit flip (O) 64 64 £0

Bdev bit flip (C) 64 64 £0

Bdev  medium error (O) 64 8113.8 46.6193
Bdev slow disk (O) 64 0+£0

Ext4 bit flip (C) 64 64£0

VDO bit flip (C) 64 378.8 & 14.7838
VDO bit flip (top C) 64 11519.4 £ 2.2450
VDO  bit flip (unique C) 64 64£0

TABLE III: Number of injected faults and reported failures
(integrity check) for the different SUTs (Bdev, Ext4 and
VDO), types of faults (bit flip, medium error, and slow disk)
and for the offset- (O) and content-based (C) algorithms.

workload, which is writing more than 16 million blocks.

For Ext4, the performance (99.34 MiB/s) is lower then
using a standard block device due to the overhead of using
a file system, while, again, the injection of bit flip faults
does not affect the overall performance. On the other hand,
we notice a significant decrease in throughput (= 40 MB/s)
for VDO under all fault-injection scenarios. This performance
decrease is related with the I/O overhead introduced by the
data deduplication feature supported by this system.

B. Fault injection and failure propagation

Table [ illustrates the number of injected faults and failures
generated from these for all the experiments.

As expected, the Bdev-baseline setup does not include any
faults or failures. On the other hand, introducing bit flips
generates 64 corrupted blocks at the Bdev and Ext4 SUTs.
No failures are reported for the slow disk fault since the
benchmark is just introducing a delay on I/O requests and,
therefore, not compromising their reliability.

For the medium error experiment, there are 8113 failures
reported. As explained in Section each I/O request
intercepted by ACHILLESBENCH can include multiple blocks
(contiguous offsets) to be written or read. Therefore, a medium
error for a given block (offset) may be propagated to others if
these are intercepted in the same I/O request, thus explaining
the high number of reported failures.

Interestingly, the number of failures (corrupted data) also
changes across the three VDO scenarios. For the VDO-bit flip
(c) experiment, 378 failures were reported in average. This
happens because the blocks targeted for bit flip injection will
have different numbers of duplicate blocks already persisted
at the storage medium which, in turn, will affect the amount
of corrupted blocks reported.

To help understating this observation one can look at the
other two experiments. On one hand, in the VDO-bit flip
(unique c) experiment, the benchmark is only targeting blocks
with unique content at the storage medium. Thus, the number
of reported failures is always 64 (best-case scenario in terms of
failure propagation). On the other hand, the VDO-bit flip (top
c) is always targeting blocks with a high number of duplicates
at the storage medium. Therefore, the number of reported

failures greatly increases (11,519 blocks). These results show-
case the need for using ACHILLESBENCH when evaluating the
reliability of solutions with built-in data deduplication.

The variance in the number of reported failures for the
medium error and VDO experiments is related with the non-
determinism associated with our real deployment and exper-
iments. This way, as each run of a given experiment may
change in terms of I/O performance and in the way data
is written to the SUT, the number of reported failures also
changes accordingly.

C. CPU and memory consumption

The CPU (= 59%) and memory (=~ 2.3 GB) consumption is
identical for all experiments with the BDev and Ext4 SUTs.
On the other hand, VDO experiments have lower CPU (~
8%) and memory consumption (= 1 GB) due to the lower
throughput observed at these.

VI. CONCLUSION AND FUTURE WORK

ACHILLESBENCH proposes a new benchmarking frame-
work for evaluating the performance and reliability of storage
systems. As main design principles, our solution is focused on
the evaluation of multiple storage optimizations and interfaces
(i.e., POSIX and block device), while supporting different
types of faults (i.e., data corruption, I/O errors and delays).

The preliminary experimental results validate several key
points about ACHILLESBENCH. Firstly, it can simultaneously
evaluate the performance and reliability of storage solutions,
while the proposed fault-injection mechanisms introduce low
overhead in the I/O critical path.

Moreover, the results show that our prototype can indeed
evaluate several storage solutions, exposing different I/O inter-
faces, and that different types of faults have specific impacts on
the SUT’s performance and reliability. As examples, medium
errors can lead to the unavailability of several storage blocks,
and a small number of I/O delays can have a deep impact on
performance. Interestingly, the results motivate the case for us-
ing ACHILLESBENCH when evaluating storage optimizations
such as data deduplication where bit flips can lead to extensive
data corruption and have a deep impact on storage reliability.

As future work, it would be important to validate
ACHILLESBENCH with other SUTs, fault-tolerant mecha-
nisms, storage optimizations (e.g., data compression, caching),
and types of faults (e.g., intermittent faults, misplaced op-
erations). Also, it would be important to consider other 1/O
workloads (e.g., read workloads, different access patterns).
Evolving ACHILLESBENCH to be able to evaluate distributed
storage systems is also an interesting research path left open
by this work.
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