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Abstract
With the increasing number of connected devices, it be-
comes essential to find novel data management solutions
that can leverage their computational and storage capa-
bilities. However, developing very large scale data man-
agement systems still requires tackling a number of inter-
esting distributed systems challenges. Namely, the intrin-
sic dynamism observed in large scale systems demands
software that is able to cope with continuous failures and
high levels of node churn. In this context, pro-active
approaches to fault tolerance proved suitable and effec-
tive. In particular, epidemic-based protocols are known
for their resilience and have been successfully used to
build DATAFLASKS, an epidemic data store for massive
scale systems. Notwithstanding the fact that it is able to
cope with very high levels of churn, the underlying pro-
active approach to fault tolerance is resource demanding.

In this paper we extend our epidemic data store with
deduplication to design DDFLASKS. This novel system is
evaluated in a real world scenario using several Wikipedia
snapshots, and the results are twofold. First, we show
that deduplication is able to decrease storage consumption
from 45% up to 63%. Second, we show that deduplication
is also able to decrease network bandwidth consumption
by up to 20%. These improvements are key for increasing
the effectiveness and applicability of our very large scale
data store.

The system developed is open-source and, to the best of
our knowledge, is the only data store tailored for massive
scale systems and with deduplication built-in.

1 Introduction
For many years now we hear promises of the emergence
of the Internet of Things (IoT) and of Edge Computing.
Still, the idea of a world of interconnected things has re-
mained more an idea than a concrete reality. Recent pre-
dictions from the International Data Corporation (IDC)
studies, however, point to significant developments in this

area and it is expected that by 2020 there will be an ex-
traordinary number of 32 billion things connected to the
Internet [17]. Additionally, IDC studies also point that the
amount of digital data will grow from 4.4 Zettabytes in
2013 to 44 Zettabytes in 2020.

Naturally, an explosion in the number of connected de-
vices and in the amount of data being produced and ex-
changed demands for novel approaches to data manage-
ment. Massive scale systems, composed of thousands to
millions of devices, exhibit specific characteristics that are
specially challenging and need to be addressed. Namely,
the increase in scale is necessarily accompanied by an in-
crease in system dynamism. Such dynamism arises both
from failures that, in these environments, become the rule
instead of the exception and by the natural constant en-
trance and departure of devices, which we will call nodes
from now on [28].

Alongside, real world applications start to struggle
to find affordable systems to manage and store massive
amounts of data. As an example, the Wikimedia Foun-
dation is currently requesting help to users that have
spare storage and bandwidth capabilities to store and host
Wikipedia snapshots [12]. These snapshots contain the
entire history of Wikipedia across distinct periods of time
and are valuable for a wide variety of users including re-
searchers. In fact, it is, nowadays, really hard, if not
impossible, for common users to have access to older
Wikipedia snapshots as Wikimedia has limited storage ca-
pabilities. Offering a massive scale storage system able to
accommodate the entire Wikipedia and its history rely-
ing only on commodity hardware is of significant inter-
est. Moreover, serving all these snapshots from an unified
storage service, instead of scattering the snapshots across
independent storage systems, is key for users to have an
efficient way of accessing the full history of Wikipedia.

Recent research work proposed a data store entirely
built with epidemic protocols, tailored precisely for large
scale environments [22]. The success of DATAFLASKS,
with respect to coping with high levels of system dy-
namism, lies in its autonomous and unstructured approach
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to node organization and in its pro-active approach to fault
tolerance. In DATAFLASKS, nodes autonomously orga-
nize themselves into groups that are responsible for a sub-
set/partition of the data. Then, the number of nodes in a
group determines the data replication factor for the data
being stored. Within each group, nodes periodically and
proactively contact each other in order to maintain desir-
able data replication levels. This architecture is simple
enough to remain manageable and elegant while, at the
same time, is conveniently flexible. Note that, increasing
the number of groups increases the storage capacity of the
store while increasing the number of nodes within a group
increases the replication factor for the data being stored.

The effectiveness of a pro-active approach to data repli-
cation comes, unfortunately, with an increase in storage
and network resource usage. In particular, periodic and
pro-active exchange of data between nodes yields con-
stant network bandwidth consumption even when the sys-
tem is in a moderately stable period i.e., with a low
churn ratio. In fact, bandwidth is actually a bottleneck
for scalability in this type of systems and, even though
DATAFLASKS autonomous data partitioning alleviates the
problem, this still weakens its applicability in real world
scenarios [2]. Alongside, as all nodes belonging to the
same group are fully-replicated, the available storage
space provided by the group is limited to the size man-
ageable by the single node with the lesser storage capa-
bilities. This restriction is of special importance if we
consider each node to be commodity hardware or even
smaller edge devices where storage space available is lim-
ited.

In order to tackle both limitations just described, we
propose the integration of DATAFLASKS with data dedu-
plication, a widely used technique for eliminating du-
plicate data efficiently in storage systems, that has also
proven to be useful for reducing network bandwidth us-
age [25, 24]. Briefly, by avoiding the storage of dupli-
cate content, extra space is available for keeping addi-
tional data. Similarly, duplicate content can be detected
before being sent through the network, thus sparing net-
work bandwidth usage. As shown in the paper, dedu-
plication mechanisms allow significant storage savings in
each node, and allow improving the pro-active replication
mechanism and its network bandwidth consumption. The
result is a massive scale data store that is space efficient
and that effectively reduces bandwidth consumption while
maintaining its highly desirable resilience characteristics.

Along this paper, we describe how deduplication tech-
niques are integrated into DATAFLASKS ultimately build-
ing DDFLASKS, a massive scale deduplicated data store.
Additionally, we show the applicability of DDFLASKS
and its efficacy using a real world application. In partic-
ular, we use this novel system to serve as the storage in-
frastructure for Wikipedia [13]. Our system allows storing

and serving simultaneously both the most recent versions
of Wikipedia articles as well as older historical versions of
the same articles. Moreover, articles are judiciously stored
to maximize the effectiveness of the deduplication mech-
anisms. In fact, using real data dumps from Wikipedia,
we show that our system is able to store and serve articles
across several nodes with high levels of storage savings
(from 45% up to 63%) and network savings (up to 20%).

The rest of the paper is organized as follows. In
Section 2 we describe the architecture and structure of
DATAFLASKS, the baseline system used to build our novel
approach. Next, in Section 3 we describe the Wikipedia
use case and present some preliminary results that moti-
vate the usage of deduplication. In Section 4 we introduce
DDFLASKS. We then proceed to DDFLASKS evaluation
in Section 5 and present related work in Section 6. The
paper is concluded in Section 7.

2 DATAFLASKS: Scalable storage

The pivotal idea guiding the design of DATAFLASKS is
decentralization [22]. In DATAFLASKS each node is au-
tonomous and all nodes play the same role. A node pro-
gresses relying solely on local decisions without depend-
ing on any other node and on any kind of hierarchy. When
a client issues a request, such request is disseminated
throughout the system and each node decides how to han-
dle it. Store requests are composed by an identifier of the
object to be stored that must be unique, by the version of
the object to be stored, and by the object itself (the actual
data to be stored). Storing several versions of the same ob-
ject is important for many applications that resort to data
versioning.

Briefly, the API is composed by a get and put opera-
tion. When a get is received, if the node holds the corre-
sponding triple (key,version,object) it replies to the client.
Otherwise, it ignores the request. In the case of a put oper-
ation, the node locally decides to store the corresponding
triple (key,version,object) or to discard it. The decision
to store or not the data is used to implement data distri-
bution and replication. DATAFLASKS is designed in such
a way that prevents all nodes to take the same decisions,
which would lead to a system where all nodes either store
every object or none at all. Both situations are undesir-
able as the former prevents data distribution and the latter
defeats the purpose of the data store. At the same time,
DATAFLASKS ensures that a sufficient number of nodes
actually decides to store each data object in order to guar-
antee data replication, and consequently, to tolerate node
failures.

The set of nodes that takes the same decisions on
whether to store data objects or not is viewed as a group.
Accordingly, the decision of which data to store is reduced
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Figure 1: DATAFLASKSnode high level architecture.

to the decision of which group a node belongs to. Once
that decision is made, each node is responsible for a sub-
set of the data according to a deterministic mapping be-
tween the pair (key,version) of an object and the group it
belongs to. Data is thus distributed by groups, providing
load balancing, and replicated a number of times equal to
the size of the group. Strikingly, each node is able to de-
cide to which group it belongs without requiring any kind
of coordination.

In order to achieve this, the system is entirely built
with epidemic protocols. In particular, unstructured and
pro-active epidemic protocols. They are characterized by
their independence from any kind of structure or hierarchy
among nodes and by the fact that they rely on pro-active
mechanisms for fault tolerance. Instead of explicitly de-
tecting failures and act accordingly, pro-active protocols
are continuously taking the initiative, being able to antic-
ipate system repair. The result is a completely decentral-
ized and coordination-free data store. Characteristics that
make DATAFLASKS inherently scalable and able to cope
with unprecedented levels of system dynamism, may it be
caused by membership instability or by failures.

The architecture of a system node is depicted in Fig-
ure 1. Each node runs five components: Membership,
Group Construction, Storage, Replica Maintenance and
Interface. In order to provide some background and con-
text to the design of the system proposed in this paper, we
briefly describe how each component works in the origi-
nal setting.

Membership. This component is responsible for pro-
viding each node with a list of available nodes in the sys-
tem. It does so guaranteeing that such list represents a
random sample of nodes from the entire system and that
it is periodically refreshed. This component relies on Cy-
clon [31], a Peer Sampling Service [18], to achieve this.
It is important to notice that each membership list is al-
ways a small subset of nodes with respect to the system
size, which allows the system to scale. However, if such
size is carefully chosen, the resulting set of views yields
an overlay network that allows for reliable data dissem-
ination with very high probability [10, 11]. This is the
component that supports communication between nodes.

Group Construction. This component is responsible
for determining to which group the node belongs. As
described previously the group determines which data to
locally store or to discard. Without going into much de-
tail, this component works by leveraging information be-
ing propagated at the membership level to estimate the
number of groups needed to satisfy a desired, user de-
fined, replication factor. Then, the node places himself on
one of those groups guaranteeing that system nodes are
uniformly distributed across the different groups. For a
detailed description of the protocol please refer to [22].
Once in a group, each time a put operation is issued for
a certain key, that key is mapped deterministically to a
group by using an hash function. As described further on,
this mapping allows different versions of the same key to
be placed in the same replication group. This will allow
maximizing the deduplication mechanism effectiveness.

Storage. The storage component abstracts the actual
medium to which the data is persisted. Currently, this
component can be configured to be a in-memory store or
a disk-based one. In this paper we design and implement
a new storage component to allow data deduplication.

Replica Maintenance. Within a group, all nodes store
the same set of data objects. In order to maintain the repli-
cation level in the presence of churn, the replica mainte-
nance component periodically publishes to other nodes in
the group the set of keys it currently holds locally. Upon
receiving a maintenance message, each node checks if it
is storing all keys correspondent to the group. If not re-
quests the missing data from the nodes in its group. In
this paper we provide a new replica maintenance compo-
nent which allows to optimize this process by avoiding to
transmit duplicate data through the network.

Interface. Finally, the interface component is respon-
sible for handling the incoming connections from other
nodes and managing the request workflow in the system.
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In order to issue put or get requests the client only needs
to be able to contact a single node in the system. The
request is then forward appropriately to the correct nodes
that can fulfill it. By knowing a set of nodes in the system
it is then possible to implement different rooting strategies
for incoming client requests.

3 Duplicates in the real world
Many large information systems tend to exhibit a signif-
icant amount of duplicate data [23]. This is particularly
true for storage systems that evolve incrementally with
time. A paradigmatic example is Wikipedia, also known
as the Internet encyclopedia [13]. The Wikipedia allows
users to create, edit or complement articles about virtu-
ally any subject. Each article can evolve through time and
periodic snapshots of the entire Wikipedia database are
stored for future reference [12]. Because Wikipedia data
serves a very high volume of requests (it is considered
to be among the ten most popular websites1) and stores a
large volume of data, that is constantly evolving over time,
it is a suitable use case for DATAFLASKS that can lever-
age its highly scalable infrastructure to serve Wikipedia’s
high demand.

Naturally, different versions of the same article share
significant portions of the text, which is redundant when
stored. This means that a storage system holding the full
history of Wikipedia is expected to have a considerable
amount of duplicate content [14]. One possible approach
to eliminate such redundancy and to spare storage space
is to use incremental backup techniques such as delta-
encoding. With this technique new versions of a previ-
ously stored article are stored as deltas or diffs that only
contain the content that was actually modified. These
deltas can then be applied to the original (base) article
to rebuild a specific version of the article. Although this
technique is efficient in terms of storage space savings, it
requires additional computational power and it is slower
than deduplication, specially when articles have a large
number of versions and several deltas must be applied to
the base article to retrieve latest versions [25]. For this
reason, this paper proposes the use of block-based dedu-
plication, which allows users to query any article version
in the past and get the response without the need to re-
build a set of deltas. Further details on the deduplication
mechanisms implemented are discussed in Section 4.

In order to validate that deduplication is, in fact, suit-
able and effective for a deployment where DATAFLASKS
is serving Wikipedia articles, we performed the follow-
ing experiment. We used 15 monthly Wikipedia snap-
shots taken for the period between November of 2014 and
January of 2016 [12]. Each snapshot has the latest full

1http://www.alexa.com/siteinfo/wikipedia.org

version of all articles belonging to the English version
of Wikipedia. The snapshots were processed by the or-
der they were taken and the corresponding articles were
stored in a way that mimics the distributed storage ap-
proach taken by DATAFLASKS in a real deployment i.e.,
articles were divided into groups and stored accordingly.
Each group of articles represents the data partition that
would be assigned to a DATAFLASKS node. We then fo-
cus our analysis on each one of the partitions. It is impor-
tant to notice that deduplication will be applied locally by
each node. Consequently, nodes that replicate the same
data partition will behave similarly, which makes it suffi-
cient to analyze a single node behavior per group, i.e. the
behavior of the storage for each group of articles. Addi-
tionally, across consecutive snapshots there are some re-
peated articles that remained unmodified so these articles
were not stored in our experiment. On the other hand, new
versions of previously stored articles were routed to the
same data group where their ancestors were kept and are
stored as new objects (files) with distinct version ideinti-
fiers. This way, the experiment stores the full content for
each article version which is in conformity with the ratio-
nale explained previously where our very large data store
is used to serve several articles and their distinct versions
without requiring the usage of incremental backup tech-
niques.

After populating the distinct data groups with the
Wikipedia dataset the global storage space in use was
≈ 305 GB, corresponding to 55,745,648 articles. In or-
der to check the percentage of redundancy in the stored
dataset, we resort to the DUPSANALYSER tool2 an open-
source project that processes the content of files and ex-
tracts statistics for the duplicate content found. Duplicates
can be found either by searching for duplicate blocks with
a fixed or variable size.

The latter resorts to an implementation of the Rabin
Fingerprint scheme for calculating variable-sized blocks
and their corresponding content hashes efficiently [24].
As Wikipedia articles are text articles, using variable sized
blocks is a better choice for finding duplicates [25, 14].
Briefly, lets consider two versions of the same article
where version A only differs from version B by a sin-
gle character that was added to the beginning of the latter
version. If the two articles are scanned with a fixed size
partitioning scheme, no blocks from version A will match
blocks from version B. In contrast, the Rabin fingerprint
scheme uses a sliding window that moves through the data
until a fixed content pattern defining the block boundary
is found. This approach generates variable-sized blocks
and solves the issue of inserting a single byte in the be-
ginning of version B. More precisely, only the first block
from version B will differ from the first block of version

2https://github.com/jtpaulo/dupsanalyzer
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Table 1: Average and standard deviation for the percentage of duplicates found per group with 1024, 2048 and 4096
bytes Rabin fingerprints for DataFlasks configurations with 40, 20 and 10 groups.

# groups 1024 bytes 2048 bytes 4096 bytes
10 42.95 (± 0.11) % 33.97 (± 0.13) % 24.63 (± 0.13) %
20 42.84 (± 0.17) % 33.90 (± 0.18) % 24.60 (± 0.20) %
40 42.74 (± 0.24) % 33.84 (± 0.26) % 24.57 (± 0.28) %

Table 2: Analysis of duplicates results with 1024, 2048 and 4096 bytes Rabin fingerprints for a single group of the
DataFlasks configuration with 40 groups.

Fingerprint
Avg Size

# articles Total
space
(GB)

total #
blocks

# unique
blocks

# duplicate
blocks

Avg # copies
/ duplicated
block

Space
saved
(GB)

% duplicate
space

1024 1,393,130 7.63 7,046,744 4,226,205 2,820,539 3.20 3.27 42.88
2048 1,393,130 7.63 3,995,416 2,870,780 1,124,636 2.59 2.59 33.99
4096 1,393,130 7.63 2,550,938 2,132,849 418,089 2.65 1.89 24.81

A due to the byte addition, while the remaining blocks
will still be duplicate. Finally, the Rabin scheme is config-
urable with target average, maximum and minimum block
size, which allows avoiding the generation of very small
or large blocks while still keeping their sizes variable. In
the results discussed next, we used DUPSANALYSER to
process the articles stored at each data group, that were
stored as independent files3, in order to analyze the re-
dundancy found in a per-node basis. Individually, for each
data group, our analysis tool processed each stored file to
find intra and inter file duplicates.

Distinct group sizes results Our first results show the
amount of duplicates found per group when dividing ar-
ticles into different number of groups, namely, 10, 20
and 40 groups. Intuitively, when the number of groups
is larger, each group holds less data (articles) from the
original dataset. In this example, with 10 groups each
group holds ≈ 30GB, with 20 groups ≈ 15GB and with
40 groups ≈ 7.5GB. As shown in Table 1 the percent-
age of duplicates found do not increase significantly if a
group holds more data. This happens because most re-
dundancy is originated by storing distinct versions of the
same article in the same group, which happens identically
for the 3 group sizes. In the table it is also visible that for
larger bock sizes, the percentage of duplicates is reduced.
With a larger block size, small portions of the blocks that
are redundant are not eliminated, which explains this re-
sult. The block sizes specified in the table are the average
sizes defined for the Rabin Fingerprinting scheme. The
maximum and minimum sizes defined are calculated by
adding/subtracting averagesize/2 to the averagesize.

3Each article version was also stored as an independent file with the
full content for that version

For the blocks with an average size of 1024 bytes, it is
possible to save almost 45% of the occupied storage space
per group. At the same time, the standard deviation val-
ues are very small meaning that the percentage of dupli-
cates found in distinct groups is very similar. To sum up,
these results show that, potentially, 45% of the english
Wikipedia storage space can be saved with deduplication
with 1K variable sized blocks.

Single group analysis for the 40 groups scenario
Since the percentage of duplicates does not change signif-
icantly when considering different number of groups, we
show in Table 2 a more detailed analysis of the stored con-
tent in a single group for the experiment with 40 groups.
The analyzed group holds 7.63 GB of data corresponding
to more than one million articles. For each Rabin finger-
print size the total number of generated blocks diverges
and, as expected, with a smaller size it is possible to find
more duplicates and have significantly higher space sav-
ings. On the other hand, reducing the block size increases
the size of the metadata used to index all stored blocks
and to find duplicates. As shown in Section 5, even with
an average block size of 1024 bytes it is possible to save
both storage and network consumption while having an
acceptable metadata size in each group.

As shown in Table 3, generated blocks have an aver-
age size near to the expected one. However, since each
article is processed and partitioned independently, there is
a small chance that the last block for the article ends up
with a size that is inferior to the minimum value set for
the Rabin fingerprinting scheme. As shown in the same
table the number and the storage space occupied by these
blocks are minimal, specially when the fingerprint aver-
age size decreases. Nevertheless these incomplete blocks
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Table 3: Analysis of complete and incomplete blocks with 1024, 2048 and 4096 bytes Rabin fingerprints for a single
group of the DataFlasks configuration with 40 groups.

Fingerprint
Avg Size

# incomplete
blocks

incomplete
blocks
space (MB)

Avg size /
incomplete
block (B)

# Complete
blocks

Complete
blocks
space (GB)

Avg size /
complete
block (B)

1024 524,215 164.00 328.04 6,522,529 7.47 1229.13
2048 812,976 433.73 559.43 3,182,440 7.20 2430.27
4096 958,372 794.70 869.50 1,592,566 6.85 4618.77

are also accounted in Section 5 in terms of storage and
metadata space required.

To conclude, these results show that single-group dedu-
plication with a variable 1KB fingerprinting scheme al-
lows reducing approx 45% of the storage space occupied
by 15 snapshots of the English Wikipedia version. Note
that these snapshots only correspond to a 1 year and 3
months period and as the number of snapshots increases
the deduplication space savings will be even higher. This
motivates the next sections where we show how dedupli-
cation can be applied to DATAFLASKS and, additionally,
show that deduplication is not only useful for reducing
storage usage but also network bandwidth consumption.

4 DDFLASKS

Recalling Section 2, data distribution and replication in
DATAFLASKS is achieved by dividing nodes into groups.
Each group is responsible for a set of data and, accord-
ingly, each node belonging to that group will have to
store that specific set of data in its local storage. The
Wikipedia study discussed in the previous section shows
that a significant percentage of duplicates exists in each
node when all the versions of a specific article are grouped
together. In DDFLASKS, this insight is leveraged by en-
suring that data objects (articles) identified by a key are
always assigned to the same group independently of their
version. With this approach, all the versions of an article
are stored in the same group while clients can still retrieve
specific versions of an article by specifying the article’s
key and the desired version. This is achieved by taking
into advantage the load balancing mechanism from the
original DATAFLASKS, which deterministically routes a
certain key to a group. As a consequence, different ver-
sions for the same key are routed to the same group. This
decision is key for obtaining significant storage spacings
while performing node-local deduplication. The advan-
tage of local deduplication is that it does not require any
global index or coordination mechanisms that would im-
pact further the performance of storage requests [25]. This
way, DDFLASKS design remains fully-decentralized i.e.,
nodes progress solely based on local decisions and with-
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File A
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File A 
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d2
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Store
File

b2

b3

b1 b2

Figure 2: Deduplication in DDFLASKS

out the need for any structure or hierarchy between them.

Architecture In comparison with the baseline architec-
ture discussed in Section 2, DDFLASKS is extended with
two additional deduplication mechanisms. The resulting
system is available as open source software at http:
//github.com/fmaia/dataflasks.

First, a new storage component is provided with inte-
grated in-line local storage deduplication, which works
as follows. In each node, duplicates are identified and
eliminated before actually being stored persistently. In
the literature this approach is known as in-line deduplica-
tion [25]. Duplicates are found by resorting to an index
that maps blocks with unique content to their respective
storage addresses. When a block is being written a di-
gest of the block’s content is calculated and the index is
searched for a possible duplicate. If a duplicate exists,
then the new block does not need to be stored, otherwise,
the block is stored and the index is updated with a new
entry for that block. A Rabin Fingerprint scheme identi-
cal to the one described in Section 3 is used to divide files
into variable-size blocks and to calculate small digests of
their content [24]. This way, the index does not store the
actual content of the block but a smaller digest identifying
the content of that block. In order to retrieve files from the
storage system, an additional metadata structure, that we
refer to as file recipe is used. Each file recipe identifies
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a single file stored on DDFLASKS and tracks the digests
of the blocks that belong to that specific file. The actual
storage address of these digests can be consulted at the in-
dex. Deduplication is thus achieved because file recipes
with duplicate content share digests that are mapped to
the same storage block. Figure 2 shows an example of the
proposed single-node deduplication mechanism. As the
first step, File A is routed to the correct group of nodes.
Then, in each node storing the file, the file is divided into
variable-sized blocks and a digest for the content of each
block is calculated. In the example, block1 and block3
have the same content. Each digest is checked at the in-
dex and if not found, a new entry is added while the corre-
sponding block is stored in a append-only storage. In the
figure blocks b1 and b3 are duplicates, so only block b1
and b2 are stored. Finally, the file recipe for File A is also
kept at the node in order to fetch all the necessary blocks
when a client asks for that file. The index keeps the digests
and corresponding location for all blocks at the local stor-
age which enables both intra- and inter-file deduplication
for all files stored in the same node. In Section 5 we show
that our approach is still able to achieve significant stor-
age space savings even when metadata space is accounted
for.

In the context of the current paper we do not address
data deletion functionalities. This is motivated by the fact
that DDFLASKS is a large-scale system intended to store
large amounts of archival data. For use-cases such as the
Wikipedia one used in the paper, this is a practical as-
sumption since the main goal is to keep all versions of
wikipedia articles without ever deleting them. Moreover,
because we are targeting very large-scale epidemic stor-
age systems, we follow an in-line approach similar to the
ones proposed in previous work [26, 8]. This allows our
proposal to avoid scalability issues found in large-scale
in-line deduplication systems that must maintain a global
index for all storage nodes [8, 7].

The second deduplication mechanism proposed in the
paper aims at optimizing the network bandwidth used by
DDFLASKS data replication techniques. In order to cope
with high levels of node churn and to maintain desirable
data replication levels, each system node proactively and
periodically contacts other nodes in the same group to an-
nounce the set of files it is currently storing. If one node
receives this set and verifies that its local storage is cur-
rently missing some files, it must contact other nodes in
the same group to ask for those files. Naturally, when
churn levels become significantly high, the volume of data
traversing the network increases as more files are being
exchanged. We propose to mitigate this problem by em-
ploying deduplication to the data being exchanged be-
tween nodes. In detail, nodes periodically announce to
the group not only the set of files that they currently hold
but also the digests that compose those files. When a node

receives this list and verifies that a set of files is missing,
it checks first what digests from those files are already
stored locally. This can be done by leveraging the index
metadata used for local storage deduplication. Then, the
node only requests from the other group nodes the blocks
that are actually missing in its local storage. After receiv-
ing these blocks the node updates the index and creates
the corresponding file recipes. With this approach, only
missing blocks are sent through the network and not the
whole files. A key advantage of this mechanism is that it
relies on the metadata already used for performing in-line
deduplication, which is an idea that has proven success-
ful in previous proposals for backing up data across peer-
to-peer networks [24, 5]. Although this strategy requires
sending the list of digests when announcing the files that
nodes currently hold, we show in Section 5 that it still
spares significant network bandwidth.

Implementation details The two deduplication mecha-
nisms were implemented on top of the current implemen-
tation of the system described in Section 2. The dedupli-
cation index is implemented as an in-memory HashMap
that maps blocks digests (8 bytes) to storage addresses (8
bytes)4. Similarly, file recipes are stored in an in-memory
HashMap that maps the identifier of a file (16 bytes, 8
bytes for the file key and 8 bytes for the version) to its file
recipe whose size depends on the number of block digests
composing that file. DDFLASKS is mainly thought for
running in commodity hardware nodes and the amount of
data hold by each node is not expected to be very large
(tens to hundreds of GBs). This means that the amount
of metadata held by each node is also expected not grow
to large values. The next section gives further details for
the size of metadata expected for a specific storage size.
Additionally, in the context of this paper we assume that,
even in the presence of high levels of churn, for each
group there is always a set of live nodes. This means that
metadata for freshly booted nodes can always be recon-
structed from live nodes. Moreover, the index and file
recipe are periodically stored on disk to ensure that when
a node is rebooted, some of the previously stored metadata
is already in the node and does not need to be requested
from other nodes.

The inter-node communication in DDFLASKS is
achieved by relying in the UDP protocol. The connec-
tionless characteristics of this network protocol withdraws
the need to maintain connections, however it introduces
unreliability in the delivery of messages. In order to mini-
mize package loss, DDFLASKS splits message payloads
that exceed UDP’s maximum transfer capacity into as
many parcels as required, reuniting them upon reception.

4For each entry at the index, 4 extra bytes must be stored because
variable sized blocks are being used and their size must also be kept.
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Notwithstanding the fact that such mechanism allows de-
livering payloads bigger than what is allowed by a single
UDP datagram, it does not prevent package loss. To mit-
igate this possibility, DDFLASKS ensures that packages
are re-transmitted after a configurable time threshold, thus
ensuring the delivery of messages.

5 Evaluation
DDFLASKS was evaluated in a real deployment to val-
idate two main claims. First, that deduplication allows
sparing significant storage space for each node. Second,
that the network bandwidth used by nodes when exchang-
ing messages is also reduced.

To this end, we have performed a set of experiments
that demonstrate the effectiveness of the deduplication
mechanism implemented. Each experiment was run both
in the original DATAFLASKS, non-deduplicated system
(used as the baseline) and in DDFLASKS. The experiment
set up consists of a cluster of commodity hardware nodes
equipped either with a 3.1 GHz Dual-Core Intel i3 Proces-
sor, 8 GB of RAM and a 7200 RPMs SATA disk or a 3.7
GHz Dual-Core Intel i3 Processor, 8 GB of RAM and a
SSD disk. All nodes are connected through a gigabit eth-
ernet switch. It is important to notice that hardware het-
erogeneity does not impact the results of our experiments.
In fact, it is out of the scope of the present paper the eval-
uation of system performance metrics. Instead, we focus
on analyzing storage and network savings achievable by
our system. Similarly, the validation of DDFLASKS scal-
ability to thousands of nodes and resiliency to high churn
rations is already addressed in previous work [22].

Leveraging the results obtained in Section 3 and aiming
at real world assessment of DDFLASKS, all the experi-
ments presented next resort to actual Wikipedia data.

5.1 Storage Savings

In order to evaluate the storage behavior of DDFLASKS
we have considered 15 Wikipedia monthly snapshots.
Each one of these snapshots contains a set of articles from
the English version of the Wikipedia. From snapshot to
snapshot each article may change reflecting its evolution
through time. In the real world deployment of Wikipedia,
users see only a single (latest) snapshot. However, in our
scenario we want to go a step forward and it is our goal
to simultaneously store and serve several Wikipedia snap-
shots.

The 15 snapshots used amount to ≈ 115 GB corre-
sponding to ≈ 6.3 million articles. Each article is stored
as a single data object in the storage system and each new
article snapshot corresponds to a new version of such ob-
ject. Moreover, article versions are treated as new articles

but are identified with the same key as the original article
and different version number. This information is used
by DDFLASKS to collocate articles with their subsequent
versions.

We configured both DATAFLASKS and DDFLASKS to
arrange nodes into 16 groups. Each group is responsi-
ble for storing a subset of the articles written to the store.
As described previously, all nodes belonging to a certain
group store the same data and deduplication is applied lo-
cal to each node. Consequently, in order to observe the
system’s behavior it is sufficient to analyze the behavior
of a single node per group. Other nodes in the same group
will exhibit exactly the same results.

The experiment consisted on loading both
DATAFLASKS and DDFLASKS with the 15 data
snapshots writing each article and subsequent versions
in chronological order (from the oldest snapshot to the
latest one). After the load was completed we analyzed
the storage usage of a node per group.

In Table 4 we present the results of this experiment. It
is observable that DDFLASKS is significantly more fru-
gal than DATAFLASKS with respect to storage space us-
age. The former requires 42.4 GB to store all the articles
while the latter, without deduplication, requires 115.5 GB.
In detail, 73.1 GB are saved by using deduplication which
corresponds to a space saving of 63% when compared to
the baseline approach. Please note that, when compared
with the motivation tests described in Section 3, there is an
improvement in the storage savings results. This improve-
ment is explained by the fact that, in this real deployment,
we used a sample of the articles (and corresponding ver-
sions) used in the motivation experiments, which happen
to exhibit slightly higher redundancy between them. Nev-
ertheless, this experiment validates the effectiveness of
deduplication with respect to storage consumption. Ad-
ditionally, we can observe that the local storage space re-
quired by nodes in different groups is similar and that the
deduplication savings in each node are identical to the one
observed globally for the whole storage. This is a direct
consequence of using a load balancing strategy that routes
articles uniformly across distinct groups.

Going into some detail, we also show in the table the
space used by metadata structures. In both systems, more
than 390,000 articles were stored in each node. As ex-
pected, deduplication requires additional metadata space
for storing and indexing articles’ blocks, while in the
baseline system it is only required a simpler file recipe that
points a specific file to its storage address. Nevertheless,
the space savings achieved clearly compensate the over-
head introduced by the extra metadata structures used in
DDFLASKS. In fact, less than 17% of the space spared by
deduplication is needed for fulfilling the extra metadata
space overhead. Finally, Table 5 shows the exact space
occupied by the index and file recipe metadata in our sys-
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Table 4: Storage and metadata space occupied for DDFLASKS and the DATAFLASKS storage systems
DATAFLASKS DDFLASKS

Global storage space (GB) 115.5 42.4
Average storage space / node (GB) 7.2 (± 0.08) 2.65 (± 0.05)
Global Deduplication savings (GB) - 73.1
Average deduplication Savings / node (GB) - 4.55
Global Metadata space (GB) 1.32 12.04
Metadata space / node (GB) 0.08 (± 0.003) 0.75 (± 0.05)

Table 5: Space occupied by DDFLASKS index and file
recipe

Metadata Global space (GB) Space / node (GB)
Index 5.35 0.33 (± 0.002)
File recipe 6.69 0.42 (± 0.003)

tem. Again, the space occupied by each metadata struc-
ture across different nodes does not change significantly.

5.2 Network Savings
Replication is achieved in our system resorting to peri-
odic message exchanges between nodes with information
about the data objects they are storing. Each time, follow-
ing a message exchange, a node detects it is missing some
object it requests it from other nodes in the same group.
Naturally, if the system is stable, it is expected that nodes
store all correspondent data objects and that these mes-
sage exchanges do not yield missing data requests. How-
ever, when nodes fail or enter the system data objects need
to be requested to maintain the desirable replication lev-
els.

In this experiment, we show that deduplication can re-
duce network consumption of the data exchange mecha-
nism between nodes. We focus on two nodes belonging
to the same group and observe their behavior when one
of them keeps failing and re-entering the system while the
system is continuously being loaded with new data. Nat-
urally, it is expected that each time the node re-enters the
system it will request missing data from its peer that runs
continuously.

The test ran for 2 hours and after the first 30 minutes
one of the nodes was stopped in intervals of 20 minutes. In
detail, after being stopped the node remains offline for 20
minutes and then it is rebooted again and it is kept online
for additional 20 minutes. This cycle was repeated until
the last 30 minutes of the test when the two nodes were
kept online. The node being stopped saved its metadata to
disk periodically to ensure that when rebooted the index
and file recipe metadata were holding previously stored
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Figure 3: Network consumption in DATAFLASKS and
DDFLASKS

information.
Again, 15 Wikipedia monthly snapshots were used, and

both systems (DDFLASKS and baseline) stored more than
400,000 articles, which corresponds to ≈8.3GB. Please
recall that the two nodes were configured to be in the same
group so these were fully-replicated, each holding the
same amount of articles mentioned previously. In terms
of storage space savings the DDFLASKS nodes stored 4.3
GB while the baseline system nodes stored 8.3 GB. This
corresponds to a space saving of ≈49%, which is in con-
formity with the results discussed previously and in Sec-
tion 3. The metadata space required by each node is also
compensated by the space savings as in the previous re-
sults.

Figure 3 shows the network consumption for
DDFLASKS and the baseline approach without net-
work deduplication. The results show that the baseline
approach sends more than 22 GB through the network
while the deduplication approach only sends 17.71 GB.
Note that these bandwidth consumption results consider
all network traffic. In fact, while most of this traffic is due
to the data replication mechanism, system control traffic
and client requests are also accounted for in the total
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value. Moreover, as discussed previously, both systems
rely on the UDP protocol that requires resending mes-
sages that are lost due to failures of the protocol, which
also increases network bandwidth usage. Nevertheless,
these results show that only by using deduplication for
the data replication mechanism it is possible to spare
≈20% of all the data exchanged across replicated peers.

The results described in this section support our claim
that by using deduplication in DDFLASKS it is possible
to spare significant storage (more than 49%, depending
on the Wikipedia sample used) and network usage (20%).

6 Related work

In the pursuit for large scale data management, tradi-
tional relational database systems have been, for cer-
tain domains and applications, largely replaced by new
approaches to data management. Commonly know as
NoSQL data stores, these data management systems of-
fer relaxed consistency guarantees when compared with
traditional relational database management systems. Ex-
amples are Dynamo, PNuts, Bigtable, Cassandra and
Riak [6, 4, 3, 20, 19]. One of the key features of these data
stores is how they implement data distribution and dis-
covery. Leveraging scalability properties of peer-to-peer
protocols, all these data stores rely on a distributed hash
table (DHT) such as Chord or variants to distribute and
locate data objects [29]. The exceptions are Bigtable and
PNUTS, which are centrally managed instead. However,
it is important to notice that these data stores typically use
a specific DHT variation called ’one-hop’ DHT [16, 30].
This variation allows faster lookups but requires complete
membership knowledge, i.e., each node knows about all
other nodes in the system. Moreover, DHTs are know to
struggle in the presence of high levels of churn [27]. As
a result, even if the distributed and peer-to-peer nature of
these data stores is closely related to DATAFLASKS, this
system presents an unique unstructured and pro-active ap-
proach to node organization and data replication.

To our best knowledge, applying deduplication to epi-
demic massive scale systems such as DATAFLASKSfor
improving the usable storage space of peers and to im-
prove the network bandwidth usage of gossip protocols
and pro-active replication mechanisms is a novel contri-
bution of this paper. To achieve these goals, this paper
leverages ideas of previous work on deduplication for dis-
tributed storage systems [25]. In more detail, for achiev-
ing both storage and network savings, in-line deduplica-
tion is applied so that duplicates are eliminated before be-
ing stored persistently [26, 8]. In fact, for sparing network
bandwidth, duplicates are eliminated before even being
sent through the network [24].

Peer-to-peer in-line deduplication, where backups are

made cooperatively with remote nodes, was introduced in
Pastiche [5]. In this system, nodes backup their data to
other remote nodes that are chosen by their network prox-
imity and data similarity. Only non-duplicate data is sent
through the network and since nodes with similar datasets
are chosen, the amount of data that must be sent through
the network and stored in each peer is reduced signifi-
cantly. Other distributed deduplication systems propose
novel load balancing designs that route similar data to
the same node in order to optimize the amount of dupli-
cates found and, consequently, maximize storage space
savings. These proposals rely on centralized indexes that
have global knowledge of the content stored in all nodes,
on distributed indexes that scale better than the central-
ized ones, on statefull and stateless routing algorithms,
and on probabilistic routing algorithms that do not need a
global knowledge of the content of each node in the sys-
tem [8, 9, 21, 1, 7, 14, 32, 15].

Although DDFLASKS could benefit from some of the
ideas and optimizations discussed in previous deduplica-
tion systems, our current design uses the original load
balancing algorithm proposed by DATAFLASKS. Our
approach collocates different versions of the same data
objects, which are expected to have duplicated content.
Deduplication is thus performed locally on each node i.e.,
each node manages its own index and only eliminates du-
plicates that are stored on its local storage. Strikingly,
as shown in the paper, for realistic use-cases such as the
Wikipedia one, ensuring that the same versions of arti-
cles are routed to the same DDFLASKS group is enough
to achieve significant storage space savings while keeping
metadata overhead acceptable. Additionally, our dedupli-
cation design can be leveraged to spare not only storage
space but also network bandwidth usage across nodes. For
epidemic data stores such as DDFLASKS this is, to our
best knowledge, a novel contribution that reduces signif-
icantly the number of messages exchanged across nodes,
thus improving the efficiency of current gossip protocols,
which is of particular importance since bandwidth con-
sumption is critical in these systems [2].

7 Conclusion

In this paper we propose a deduplicated very large scale
data store. Its main goal is to handle massive scale
amounts of data minimizing storage resource usage while
being highly scalable and resilient to node churn. To
achieve this goal, DDFLASKS is built resorting to a stack
of proactive and completely decentralized gossip-based
protocols. The core idea driving this store is effective data
dissemination and independent, local decisions of what to
do with the data at each node. In-line deduplication is em-
ployed at each node and we show, resorting to a real world

10



scenario, that the system is able to save up from 45% up
to 63% of storage space.

DDFLASKS is able to cope with unprecedented
amounts of churn at the cost of constant message ex-
changes between nodes. Naturally, this results in high
bandwidth consumption. Interestingly, we show in this
paper that deduplication mechanisms introduced to save
storage space can also be used to reduce the amount of
data sent through the network. Our evaluation shows sav-
ings of up to 20% in network bandwidth consumption.

By introducing local deduplication at each node our ap-
proach does not influence the scalability and resilience of
the data store as a whole. DDFLASKS can still adapt
to deployments of thousands of nodes and endure very
high churn rates. In more detail, local deduplication does
not require any kind of distributed coordination mecha-
nism neither impacts the replication mechanism. Nodes
still progress solely based on local decisions and with-
out the need for any structure or hierarchy between them.
Moreover, not requiring a global knowledge of the content
stored across all nodes also helps mitigating the overhead
known to be induced by current distributed in-line dedu-
plication proposals.

Considering scenarios such as data backup, versioned
data storage or data archival, the use of in-line dedupli-
cation proves to be very effective, even when performed
locally. Not only storage savings are significant but, addi-
tionally, from the point of view of the client, data becomes
available and accessible independently of its age or ver-
sion. Taking as an example the Wikipedia, our use case
throughout the paper, DDFLASKS is able to serve differ-
ent, historical versions of Wikipedia articles with reduced
computational impact and with very significant storage
savings.

The combination of deduplication and very large scale
data management is, to the best of our knowledge, a novel
contribution of this paper. It renders DDFLASKS a suit-
able system for massive scale data storage and manage-
ment.
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