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Abstract—On-line applications and services are now a crit-
ical part of our everyday life. Using these services typically
requires us to trust our personal or company’s information to
a large number of third-party entities. These entities enforce
several security measures to avoid unauthorized accesses
but data is still stored on common database systems that
are designed without data privacy concerns in mind. As a
result, data is vulnerable against anyone with direct access
to the database, which may be external attackers, malicious
insiders, spies or even subpoenas.

Building strong data privacy mechanisms on top of com-
mon database systems is possible but has a significant impact
on the system’s resources, computational capabilities and
performance. Notably, the amount of useful computation that
may be done over strongly encrypted data is close to none,
which defeats the purpose of offloading computation to third-
party services.

In this paper, we propose to shift the need to trust in the
honesty and security of service providers to simply trust that
they will not collude. This is reasonable as cloud providers,
being competitors, do not share data among themselves.
We focus on NoSQL databases and present SafeRegions, a
novel prototype of a distributed and secure NoSQL database
that is built on top of HBase and that guarantees strong
data privacy while still providing most of HBase’s query
capabilities. SafeRegions relies on secret sharing and multi-
party computation techniques to provide a NoSQL database
built on top of multiple, non-colluding service providers
that appear as a single one to the user. Strikingly, service
providers, individually, cannot disclose any of the user’s data
but, together, are able to offer data storage and processing
capabilities. Additionally, we evaluate SafeRegions exposing
performance trade-offs imposed by security mechanisms and
provide useful insights for future research on performance
optimization.

Keywords-HBase, Secure databases, Multi party computa-
tion

I. INTRODUCTION

Convenience and significant economical savings are

spurring many enterprises and end users to move their

data and applications to third-party cloud services. This

naturally implies trusting that these services employ the

necessary mechanisms to ensure that their data is kept

private. However, such trust is misplaced. In fact, recent

studies have shown that a large amount of the data stored

in third-party infrastructures is unprotected against the pry-

ing eye of a system administrator, a government subpoena

or even an external attacker [1]. Notably, leveraging cloud

database storage and computational capabilities while en-

suring data privacy is still an open research challenge.

An immediate approach to achieve stronger data pri-

vacy guarantees is to strongly encrypt the data before

uploading it to third party infrastructures. However, this

solution raises several issues. For instance, if a traditional

symmetric cypher is applied to every database entry many

of the query capabilities of that database become unusable

since data properties, such as order, are lost with the

encryption scheme. As a result, the database becomes

nothing more than a storage service and computation over

the data must be made at the user side where data can

be decrypted and processed. Needless to say that this

defeats the purpose of using the storage and processing

capabilities of a third-party infrastructure. This limitation

can be partially solved by privacy-aware databases such as

CryptDB that leverages multiple encryption schemes and

rewrites database queries at the client side so that useful

computation can be done over protected data [2]. However,

this approach has been shown to still leak a significant

amount of sensitive information [3].

This paper explores an alternative solution for provid-

ing a privacy-aware database. The core idea behind this

solution is to divide data management and processing

amongst multiple service providers with independent in-

frastructures. By doing so, no provider is able to access

the original data or extract any kind of useful knowledge

from the protected data, while the client still has a fully-

functional NoSQL databases. Rooted on this idea, we

propose a solution that relies on secret sharing to divide

sensitive data into a set of secrets that are stored across

several domains that are not expected to collude. Each

secret reveals nothing about the data and can be seen

as a piece of a puzzle. With a single piece the puzzle

cannot be solved but, after every single piece is put into

the right place the puzzle is complete and the original data

is recovered. Additionally, the proposed solution relies on

secure multi-party protocols (MPC) to leverage distributed

computation on top of the secrets without leaking any

information. To sum up, by combining secret sharing and

multi-party protocols our proposal achieves both private

data storage and private processing.

The main contribution of the paper is SafeRegions, a

system built on top of the HBase NoSQL database that

resorts to secret sharing and MPC. SafeRegions leverages

the concept of a virtual cloud database composed by

multiple independent untrusted cloud infrastructures, a

concept that was previously discussed for secure storage

systems [4, 5]. In more detail, our prototype resorts to

different HBase clusters deployed on independent infras-

tructures and on a proxy that abstracts clients from this

distributed setup, thus presenting SafeRegions to clients’

applications as a regular HBase-like NoSQL database.

The paper is structured as follows: an introduction to se-

cret sharing, multi-party protocols and HBase is presented

in Section II. Section III presents SafeRegions’ architec-
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ture and discusses its components. Section V presents the

results and an analysis of SafeRegions prototype’s evalua-

tion. Section VI discusses related work while Section VII

concludes the paper.

II. BUILDING BLOCKS

SafeRegions combines secret sharing and MPC pro-

tocols with HBase to provide a privacy-aware NoSQL

database solution. Next we discuss each of these building

blocks in more detail.

A. Secret Sharing and MPC

Secret sharing schemes consider two types of entities,

a dealer D and a set of players P = {p1, . . . , pn}.

The purpose of a dealer is to transform a value v in

a set of n secrets and store on each player a single

secret. Each secret by itself does not leak any information

about v which conforms to our privacy needs. Value v
can be reconstructed only when all secrets are grouped

together [6].

The purpose of secret sharing is to ensure the privacy

of stored data. This way, this technique is not intended

to provide processing capabilities over the secrets. Secure

multi-party protocols solve this limitation by calculating

an arbitrary function over a set of private inputs, such

as the generated secrets, without leaking any sensitive

information. While many protocols have been proposed,

there are few practical implementations, which has lead

us to focus on the Sharemind protocols [7].

In Sharemind, values are protected with additive secret

sharing over a finite field Z2n . Additive secret sharing

enables arithmetic calculations to be performed over the

finite field which is crucial to compare values through

secure protocols. Namely, two protocols are proposed,

an Equality protocol and a GreaterThan protocol. The

protocols are bound to three parties. With a lower number

of parties, privacy cannot be ensured while an higher

number would only increase the overhead of computation.

The Sharemind protocols follow the following scheme.

There is one Dealer that, for each input value, generates

three secrets (1 in Figure 1). Each secret is stored in one

of three players (2 in Figure 2). To give an overview of a

protocol execution (depicted in Figure 2), let us consider

that the Dealer wants to search for a certain value v is

stored in the system. In order to do so, the Dealer generates

new secrets from v and sends one of them to each player

requesting a comparison protocol execution (1 and 2 in

Figure 2). Each player, in order to execute the protocol,

follows a set of secret generation and secret exchanging

steps with other players (3 in Figure 2). These computation

and message exchanging steps can be repeated. Next, each

player returns its computation result to the Dealer (4 in

Figure 2). Finally, the Dealer can extract the computation

result from the combination of the three secrets (5 in

Figure 2). In this case the result is one if the value v
was found in the system and zero otherwise.

Trust Model. The previous protocols are proven to be

secure under the passive (honest-but-curious) model. This

Figure 1. Store operation.

Figure 2. Search operation.

model assumes an attacker capable of gaining access to

the infrastructure of at most a single party, before the

execution of any protocol. The attacker can see all the

secrets held by the party, as well as all the messages

exchanged by such party. However, the attacker is not

capable of interfering in any way on the output of the

computation nor see any of the messages exchanged

between other entities [7]. Furthermore the protocols are

proven to be universally composable, meaning that every

protocol on the framework can be composed and remain

secure.

B. HBase

HBase is an open-source, widely used NoSQL data store

that offers high efficiency and scalability [8]. This data

store is heavily inspired by Google BigTable [9] and offers

a powerful and scalable data model. Similarly to relational

databases, information is stored on tables. However an

HBase table, contains two levels of columns: column fam-

ilies and column qualifiers. Column families are defined

on table declaration and group multiple column qualifiers.

As such the column qualifiers are always associated to a

column family and are only defined on value insertion.

In the case a column family does not contain a column

qualifier, the new qualifier is dynamical added. Each row

on a table has an unique identifier and the cells of the

table can contain empty values. Table I contains a model

of an HBase table with one column family, Name, and

two column qualifiers (First and Last Name).

As tables grow in size, HBase can scale dynamically by

partitioning a table horizontally, creating multiple regions.

Each region of a table holds a subset of the rows and is

stored on a single RegionServer. These servers do most of

the computation in HBase and are the backbone of HBase

scalability. The reminder of the computation is performed

by the HBase master. This entity manages the cluster in

a master/slave architecture and is the entry point of the

system. Every client operation must first interact with the
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Identifier Name

First Name Last Name

1412 John Alistar

2231 James Smith

6262 Jane

Table I
EXAMPLE OF AN HBASE TABLE

Master that redirects the clients to a RegionServer that can

handle the request.

The HBase client API is composed by PUT, GET,

DELETE and SCAN operations. The PUT and DELETE

are the main operators used to insert, update or delete

a record. A simple PUT operation requires declaring a

row identifier, a column family and a column qualifier

to be inserted/updated. On the other hand, a DELETE

only requires specifying a row id in order to remove the

corresponding row. By default the GET operator returns

every column value from a single row of a table. However,

all these operations can be enhanced to only specify

certain column families or/and column qualifiers to be

inserted, deleted or retrieved. Finally the SCAN operator

returns the set of rows whose id is between a minimum

and maximum value. Similarly, a SCAN can return all

rows and corresponding columns or a filter may be used

to discard unwanted records. For instance it is possible to

define a SCAN operation that only returns the rows from

Table I where the value of column First Name is “John”.

The implementation/behavior of the previous operations

can be modified/extended without breaking the API or

changing the database source code due to the concept

of Coprocessors. Coprocessors enable developers to load

custom code for each operation that is executed by the

database. While there are several types of Coprocessors,

this paper focuses on the Endpoint Coprocessors. These

coprocessors allow adding new operations that can be used

by an HBase client application as a regular operation and

are essential to provide the MPC protocols on SafeRegions

in a generic and transparent manner.

The vanilla HBase system does not provide any mecha-

nisms to protect stored data’s privacy. In the next sections

we present SafeRegions, a novel solution to ensure private

storage and computation on top of HBase.

III. SYSTEM DESIGN

The main idea of SafeRegions is to use additive secret

sharing to encrypt users’ data and then to leverage the

Equality and GreaterThan MPC protocols to provide se-

cure HBase operations. These two protocols are essential

since most computation done in HBase requires equality or

order comparison of values. However, there are two major

challenges that must be addressed to achieve a privacy-

aware HBase MPC solution. Firstly, the previous protocols

require three independent computation parties, which in

our case are three HBase clusters. Secondly, we want

to still offer a unified interface to clients, which implies

enhancing HBase client to abstract this distributed deploy-

ment and the novel security mechanisms while providing

the same API as the vanilla HBase client. In Figure 3

we present an high level overview of the SafeRegions

architecture. Along this section we briefly describe its

three main components: client, computation parties and

communication middleware.

Figure 3. SafeRegions Architecture

A. SafeRegions Client

The client component is the entry point to the SafeR-

egions system and provides the same API as the vanilla

HBase client. This component abstracts all the complexity

of protecting users’ data (secrets generation and decoding)

and the communication with the three HBase clusters.

The client is also responsible for orchestrating the in-

teraction with the different computation parties to process

user’s requests. It is the client component that transforms

user’s data into protected data to be stored and queried in

the same way as the Dealer in Figure 2.

In order to query protected data, the client queries each

one of the HBase clusters that then perform the necessary

MPC protocols on the locally stored secrets. In more

detail, this request can be made by issuing parallel remote-

procedure calls (RPC) calls to each HBase SearchEnpoint

coprocessor. Each HBase cluster processes the request

resorting to its local storage, and returns as a response a

vector with the resulting secrets of performing the desired

MPC protocolos. With the three vectors, the client can

merge the correct secrets and rebuild the information

contained in the query response. Lets take as example a

GET operation over protected row identifiers. The secure

client must encode, with secret sharing, the identifier

value being requested by the user and issue requests to

the HBase clusters using these secret shared identifiers.

Resorting to the Search operator, each cluster checks for

a corresponding row in their local storage. If found, the

cluster will reply to the client component with the corre-

sponding row. Finally, the client component is responsible

for decoding the answers and replying back to the user

with the actual queried data.

B. Computational Parties

In order to support the MPC protocols discussed in

Section II-A, we consider three computational parties in

our architecture that correspond to the players in Figure

2. In SafeRegions these components are three HBase
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clusters. Each cluster is responsible for one of the three

secrets generated per data piece. Naturally, this implies

that these clusters are structurally similar. They share the

same table structure and will hold the same amount of

data.

However, the clusters are necessarily deployed in inde-

pendent infrastructures and can be uniquely identified by

a number ID. This identification is important for the client

to store and collect secrets from the distinct clusters. For

instance, some data A is transformed into three secrets A1,

A2 and A3 to be stored in cluster 1, 2 and 3. Similarly, if

A1 is stored in TableOne at cluster 1, then A2 is stored

in an identical table at cluster 2 and so forth.

In addition to maintaining an identical structure across

HBase clusters, MPC protocols requires communication

between the clusters. This is achieved with a coprocessor
endpoint, which we call SearchEndpoint. The SearchEnd-
point does not require any modification to the architecture

neither to the implementation of the HBase core mech-

anisms. Nevertheless, the SearchEndpoint plays a central

role in the architecture. Each RegionServer must contain

this endpoint in order to expose the secure MPC protocols

as a RPC to be used by the client. Additionally, the

SearchEndpoint relies on a communication middleware for

exchanging secrets across parties (clusters), that is further

described next.

Upon the reception of a query request, the endpoint

starts a MPC protocol for every record stored in that

region server. The actual implementation of the protocol

is contained in a MPC library that performs all the nec-

essary computation (secret generation) and uses uses the

communication middleware to exchange messages across

parties (clusters). The validity of secrets computed with

the MPC library is verified at the endpoint that is also

responsible for replying back to the client with the query

response.

C. Communication Middleware

By default HBase does not support communication

across RegionServers. However, SafeRegions requires

communication across distinct HBase clusters. To achieve

this, we introduce a communication middleware between

the RegionServers to handle the exchange of messages

across parties. In order to support MPC protocols, the

communication middleware offers two essential primi-

tives. A send(secret, party) primitive that delivers a

secret to a target party in a non-blocking fashion and a

receive(party) primitive that waits for incoming mes-

sages. Moreover, the communication middleware ensures

that the messages sent from one party to another arrive in

order and that it is possible to always know the source

party that sent the message. These two properties are

needed for correctly supporting MPC protocols.

IV. IMPLEMENTATION

The system architecture proposed in the previous sec-

tion leaves open implementation decisions that impact the

inner working of the SafeRegions system. Starting with

maintaining different HBase structurally similar, there is

an immediate implementation detail that must be ad-

dressed, which is using secrets as row identifiers. In detail,

if secrets are used to protect HBase row identifiers, then

these cannot be mapped directly to the protected HBase

schema as identifiers because secrets generated by the

MPC library do not have deterministic content (due to

MPC randomness). This means that it becomes impossible

to match identical rows in different HBase clusters and to

update, retrieve or delete a specific row in SafeRegions.

To solve both problems, an extra column is added to the

HBase table for storing the protected identifiers (secrets).

Then, the row identifiers of each HBase table are replaced

with virtual identifiers managed by the SafeRegions client.

These identify uniquely each row and are identical across

different clusters. This virtual identifier does not leak any

sensitive information and allows matching rows and the

corresponding secrets across different HBase clusters.

For each MPC protocol execution request, our current

coprocessor implementation performs a simple sequential

iteration over every record stored in the corresponding Re-

gionServer and uses our implementation of the Sharemind

protocols to execute the necessary computation. When this

computation is finished, two of the RegionServers send

the generated secrets to a third RegionServer. This third

RegionServer combines the resulting secrets from every

record and discovers what are the HBase records that

match the NoSQL query being executed. This informa-

tion is then sent to the SafeRegions client that retrieves

from each HBase cluster the needed records (protected as

secrets) and combines them to decode the original values.

This last step does not compromise the privacy of stored

values and is an optimization of the standard Sharemind

protocol in order to lower the computation and number of

messages/data received at the SafeRegions client.

Finally, Sharemind protocols were implemented in Java

since there is not a freely available implementation. The

communication middleware is implemented using Java

NIO.

V. EVALUATION

In order to evaluate the performance of adding privacy

to common HBase operations such as, creating a table,

inserting records, and retrieving records, we performed a

set of experiments. The experiments ran on a cluster of

servers equipped with an Intel i3 CPU with four cores at

3.7 GHz, 8 GB of RAM and a 128GB SSD. Each machine

ran Ubuntu 14.04 and the SafeRegion Cluster was built

using HBase 0.98 in standalone mode. The results obtained

consist of one run of half an hour.

Finally, in the experiments we chose to preserve the

privacy of HBase identifiers with secret sharing. This

decision was taken because the tested operations perform

computation over the identifiers and not across the column

values. This way, to understand the overhead of our

solution identifiers must be protected while values can be

left in clear text.

We started by evaluating the latency for creating a
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table on vanilla HBase and on the SafeRegions system.

SafeRegions system introduces an overhead of 4.9% in

comparison to the vanilla HBase as depicted in Figure 4.

As expected, this overhead steams from adding a column

family in the table create statement and from issuing three

concurrent requests to each HBase cluster.

We then proceeded to evaluate the overhead of PUT

operations on both systems. In these experiments the client

is only inserting new keys. Since updates are not being

executed, no MPC protocol has to be performed. This

way, we are evaluating the overhead of creating three

secrets, and issuing three parallel PUT operations, one for

each cluster. The evaluation benchmark simulated multiple

clients by resorting to independent threads.

As can be seen in Figure 5 with a single client, the

latency overhead of PUT operations is 7%, however as

the number of clients increases the latency overhead also

increases, being the highest overhead value approximately

220%. This significant increase on latency comes from

spawning one thread per simulated client, each issuing

three additional concurrent PUT requests (1 per cluster).

In fact when there are n clients, there are n ∗ 3 PUT

operations to be made and n ∗ 3 threads. For instance,

when there are 20 clients, our benchmark has 60 PUT

operations and threads being executed concurrently. On

the other hand, the generation of random numbers by the

clients has small impact in performance. In detail, we use

the Uncommons maths library [10] that takes on average

0.016 ms to generate a random number.

Finally, we have evaluated the overhead incurred by

executing a MPC equal protocol. To evaluate this cost,

we ran a benchmark that pre-populated multiple rows on

the system and then performed several GET operations.

Each GET requires the equal protocol to be performed,

as described in section IV, in order to retrieve the correct

row identifier. From Figure 6, with a logarithmic scale, it is

possible to verify that the MPC equal protocol incurs a sig-

nificant overhead, while the default HBase can perform an

operation with a latency of milliseconds, the SafeRegions

operation is in the orders of seconds. While the latency

of the vanilla HBase has a constant 2 ms latency with the

increase of rows, the SafeRegion solutions sees an increase

on latency. For two hundred keys the latency reaches the

78 seconds on average. This significant increase is due

to the equal protocol that exchanges multiple messages

between the parties, for instance, with 8 byte keys it

requires 458 messages per comparison. Furthermore the

MPC protocols requires a comparison with every record

on the table, which is also a costly operation.

VI. RELATED WORK

Bringing privacy guarantees to the database-as-a-service

model (DBaaS) is a field still in expansion with multiple

paths being pursued. In 2002, NetDB2’s challenged the

database community to explore several open challenges

in databases [11]. One of the issues discussed was data

privacy, which was tackled with symmetric or asymmetric

encryption at the client side to protect users’ data before

being stored in a remote database.

The previous proposal requires queries computation to

be placed on the client side, which defeats the purpose of

leveraging the cloud’s computational resources. In order to

shift some of the computation away from the client, mul-

tiple systems proposed to use a trusted third-party service

to handle the communication and computation between

the client and the database service provider [12, 13, 14].

These solutions still depend on trusting a third-party entity.

In CryptDB a proxy mediates the communication be-

tween the client and database while rewriting queries to

leverage computation over protected data [2]. Data can

be encrypted with different schemes, deterministic encryp-

tion, order preserving encryption or Homomorphic encryp-

tion, with each one enabling different types of queries and

having different types of security guarantees. In the case of

deterministic encryption it has been shown that cryptDB

is susceptible to frequency analysis attacks [3]. Monomi

builds on top of cryptDB and improves the performance

of query processing by choosing in anticipation the most

appropriate encryption scheme for each database column.

Also query plans are used to decide which parts of the

query are processed in the untrusted service and which

are executed on the proxy/client [15].

Wai et al. takes a different approach to existing sys-

tems by removing the proxy and sharing the computation

between the client and the server [16]. Not only is the

architecture different but also the encryption schemes.

This system is based on secure MPC while sensitive

data is encrypted using secret sharing which encodes the

information in two secrets. One secret is stored on the

client while the other is stored at the server. With secret

sharing and secure MPC SQL operators can be pipelined

in a query, unlike in CryptDB where the operators that

can be executed are bound by the encryption scheme.
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The existing solutions focus mostly on SQL databases

and are not concerned with distributed databases that may

provide better performance and scalability. Our approach

is similar to Wai et al. since it also applies MPC protocols.

However, all queries are processed in the untrusted servers,

thus requiring minimal computation at the client side.

Furthermore we do not rely on the client to store meta-data

or secrets i.e., all data is stored on the HBase clusters.

VII. CONCLUSION

This paper introduces SafeRegions, a novel system that

combines secret sharing and MPC to provide privacy-

aware data storage and computation in NoSQL. Our proto-

type resorts to the widely used HBase NoSQL data store

and shows that it is possible to provide the full HBase

API for clients while ensuring that their data is stored in

a completely private fashion. In fact, by spreading the data

(secrets) into multiple HBase clusters, even if one of these

clusters becomes compromised, there is not any leakage

of sensitive information.

Like any other security mechanism, secret sharing and

MPC introduce a performance penalty in SafeRegions.

This is a necessary tradeoff, that is discussed in our

experimental evaluation section, in order to have stronger

security guarantees.

As future work, many design and implementation im-

provements are still possible. For instance, the secrets

can be calculated in parallel and the implementation of

the MPC protocols can be improved with batching or

additional parallelization.

To conclude, privacy in NoSQL comes always asso-

ciated with a performance/functionality cost. However,

we predict that in the near future, novel solutions and

optimizations will be proposed to tackle the information

privacy challenge that is now a global concern.
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