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Abstract—Cloud-based storage services such as Dropbox,
Google Drive and OneDrive are increasingly popular for storing
enterprise data, and they have already become the de facto choice
for cloud-based backup of hundreds of millions of regular users.
Drawn by the wide range of services they provide, no upfront
costs and 24/7 availability across all personal devices, customers
are well-aware of the benefits that these solutions can bring.
However, most users tend to forget—or worse ignore—some of
the main drawbacks of such cloud-based services, namely in
terms of privacy. Data entrusted to these providers can be leaked
by hackers, disclosed upon request from a governmental agency’s
subpoena, or even accessed directly by the storage providers (e.g.,
for commercial benefits). While there exist solutions to prevent or
alleviate these problems, they typically require direct intervention
from the clients, like encrypting their data before storing it, and
reduce the benefits provided such as easily sharing data between
users.

This practical experience report studies a wide range of security
mechanisms that can be used atop standard cloud-based storage
services. We present the details of our evaluation testbed and
discuss the design choices that have driven its implementation. We
evaluate several state-of-the-art techniques with varying security
guarantees responding to user-assigned security and privacy
criteria. Our results reveal the various trade-offs of the different
techniques by means of representative workloads on top of
industry-grade storage services.

I. INTRODUCTION

Public online cloud-based storage services such as Dropbox,

Google Drive or Microsoft OneDrive are nowadays the de

facto standard for users to store their photos, music and other

types of documents online. The extremely low economic barrier

of these services (which typically offer free basic accounts),

their ubiquitous availability, as well as their ease of use with

transparent client integration contribute to making them an

attractive solution for both individuals and organizations [1].

Cloud-based storage services are also largely exploited by

application developers. They typically expose cross-platform

REST-based APIs that can be seamlessly plugged into existing

systems. Developers therefore use these services to add online

storage backends to their applications without having to face the

costs and burdens of managing their own storage infrastructure.

Most online applications developed nowadays follow this

architectural pattern (e.g., online word processors, mobile

applications, etc.).

Nevertheless, as soon as the data enters the cloud provider’s

service perimeter, the client essentially surrenders control over

it [2], which is highly undesirable. In fact, the control over

personal data is among the major concerns of individuals

and organizations. A recent report [3] carried with European

citizens shows that 67% of the population is concerned by the

information they disclosed online (voluntarily or not), and only

15% think to be in control of their own data. As a consequence,

concerns over the disclosure of private information by malicious

insiders [4] and data breaches [5] have motivated a new class of

secure and safe cloud-based storage applications and services.

This trend is further amplified by the lack of security expertise

from software developers [6].

To protect the privacy of the users and their data, researchers

proposed several systems [7, 8, 6] that encrypt data at the

client side before sending it to the cloud providers. These

systems offer various security guarantees to the end-users

(e.g., integrity, authorization, privacy) and typically follow

two different deployment strategies: single- or multi-cloud

modes. The former stores data on a single storage provider,

while the latter spreads it across multiple providers, possibly

operating under distinct (non-colluding) administrative domains.

Partitioning data across multiple storage providers ensures that,

even if one of them is compromised, the attacker cannot access

the complete original information. In fact, depending on the

multi-cloud partitioning algorithm, it is possible to guarantee

that no information from the original data is leaked as long as

one of the storage providers remains secure [9].

Current systems suffer from a major drawback: they either

provide very specific yet incomplete security mechanisms

(e.g., some only provide data integrity, others provide only

data privacy [10]), or they integrate general-purpose security

measures that cannot be tailored for a given application (e.g.,

some systems bundle confidentiality, integrity, and access-

control in a single package [7]). Neither approach allows

further customization based on the user’s security requirements,

e.g. choosing among multiple security features with different

guarantees concerning data confidentiality, anti-censorship and

fault tolerance.

We strongly believe that it is essential to understand the

impact of each security measure adopted by cloud storage

systems in terms of resource consumption (e.g., computing
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power, storage space, network throughput), economic impact,

and overall performance (latency, ease of use, services offered).

For example, increasing the size of an asymmetric encryption

key to provide stronger security has non-negligible impact on

the system’s energy requirements, a crucial metric in today’s

mobile application market. Strong security measures can also

render services unacceptably slow, and even disable them.

The ability to take an informed decision on these design

compromises is of paramount importance for the deployment

of storage systems on public clouds [11].

In this context, our contributions are threefold. First, we

define a set of basic security guarantees that can be combined

and implemented by a client to securely store content in the

cloud. Second, we design and implement a modular software

architecture that can operate in single-cloud or multi-cloud

mode, interfacing with well-known public storage clouds as

well as on-premise private data stores. Third, we evaluate the

different considered security features using a set of well-defined

workloads. Our evaluation unveils the costs of each feature in

terms of resource usages, storage space, latency, and associated

financial cost.

The rest of the paper is organized as follows. Section II

overviews related work on secure cloud-based storage systems.

Section III defines the security guarantees considered in the

paper in order to allow clients to understand and combine

them according to specific needs. Section IV describes the

deployment scenarios and trust models that our system supports.

Section V discusses the design, architecture, implementation

choices of our system. Section VI present extensive evaluation

results, and Section VII concludes.

II. RELATED WORK

Several solutions were proposed during the last decade to

address the challenges of secure cloud storage [12, 13, 7]. This

section focuses on systems that fit into two main categories.

We start by discussing approaches that rely on a single storage

provider. Then, we discuss federated storage systems that split

data across multiple providers. Table I presents a summary

survey of these two types of systems.

A. Secure Single-cloud

SUNDR (Secure Untrusted Data Repository) [10] proposes

an architecture that leverages asymmetric encryption and cryp-

tographic hash function to ensure the integrity and consistency

of stored data (blocks). In particular it uses SHA-1 digests to

index each data block and a protocol based on ESIGN [14] to

detect unauthorized attempts of file modifications.

Depot [15] offers stronger liveness guarantees under node

failure than SUNDR, however it lacks native support for data

confidentiality or privacy. Data is stored in plain-text along with

SHA-256 message digests to enable data integrity checking.

Also, data is cryptographically signed using RSA with 1024-bit

keys to ensure data authenticity. Both signatures and digests

are verified upon each read request.

CloudProof further adds an encryption step: data blocks are

protected with AES [13]. Once encrypted, blocks are signed

Self- Origin Anti- Sym. Asym. Hash
System Conf. integr. auth. censor. encr. encr. func.

CloudProof [13]
√ √ √ × AES RSA SHA-1

Kamara et al. [16]
√ √ √ × AES × ×

Depot [15] × √ √ × × RSA SHA-256
SUNDR [10] × √ √ × × ESIGN SHA-1
BlueSky [17]

√ √ × × AES × SHA-256

Hail [18] × √ × × × × Univ. Hash
MetaSync [19]

√ × √ × AES × MD5
DepSky [7]

√ √ √ × AES RSA SHA-1
UniDrive [8]

√ √ √ × DES RSA SHA-1
SafeSky[6]

√ √ × × CCM × ×

TABLE I: Security features offered by secure cloud solutions

for single- (top) and multi-cloud (bottom) solutions: confi-

dentiality, self-integrity, origin authentication, anti-censorshop,

symmetric encryption, asymmetric encryption, hash functions.

with RSA to prevent unauthorized users to tamper with the data.

Also, data integrity is assured by means of SHA-1 digests.

Kamara et al. [16] discuss a high-level architecture for

a storage service that can be implemented with different

cryptographic primitives, thus offering different security fea-

tures. Moreover, data privacy is ensured by using symmet-

ric/asymmetric ciphers.

BlueSky [17] tackles the privacy and integrity problem of

enterprises with a proxy server that handles the communication

between the client and cloud provider. This proxy is installed in

the enterprise network so clients do not require any modification.

The proxy encrypts the clients data and checks the integrity of

the files retrieved from the cloud provider.

The key differentiating factor of our contribution is that

it describes a modular architecture that operates over both

single- or multi-provider storage schemes. Furthermore, this

modular architecture opens the possibility to offer novel security

primitives, such as secret sharing and entanglement, that allow

users to have a broader set of security measures for distinct

requirements.

B. Secure Multi-cloud

The previous solutions store all information in a single

storage service. By doing so, users are locked to a specific

storage service that also represent a single point of failure, both

for data availability and security breaches. We can mitigate

these drawbacks by resorting to multiple cloud providers.

In MetaSync, users’ files are replicated to tolerate data loss

and the unavailability of storage providers [19]. An additional

plug-in can also be used to conceal data using AES encryption.

Hail [18] adopts a secure multi-cloud approach. While it does

not provide native support for data confidentiality, it handles

data integrity and recoverability from node failures by using a

single trusted verifier. This verifier can be a client or a proxy

that performs a periodic check of the files integrity on the

providers and reconstructs corrupted blocks.

In DepSky [7] and Unidrive [8], data is balanced and repli-

cated across multiple providers with MDS erasure coding [20].

A data object is split into k blocks and coded to generate n
coded blocks which are then spread across the cloud providers.

The user can reconstruct the original data object from any
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subset of k out of n the blocks. This decreases the storage

overhead compared to replication approaches like the one

used in MetaSync, while achieving the same reliability level.

Unidrive uses non-systematic Reed-Solomon codes so that data

is not directly stored online. DepSky goes further by encrypting

the data before encoding it. The secret key is then divided using

secret sharing [21], and each server receives one code block

and one share of the key. This insures that any malicious entity

gaining access to less than k blocks obtains no information

whatsoever about the original data object. Unidrive encrypts

the metadata with DES and replicates it on all clouds, whereas

DepSky signs metadata files using AES.

SafeSky [6] provides a middleware layer at the operating

system level that intercepts file system calls and redirects

storage requests to cloud providers. The data object is first

encrypted. The encrypted object, the secret key, and the cipher

type are then divided using secret sharing.

Some systems offer censorship-resistant storage by creating

dependencies, or entanglement, across stored data [22]. Such

entanglement makes it difficult for unauthorized parties to

censor or tamper with data, but usually require modifying

the implementation of storage backends. In this paper we

implement, deploy and evaluate entanglement techniques atop

unmodified third-party public cloud storage providers.

In summary, the previous solutions leverage the storage

capabilities of multiple storage providers to increase the

availability and reliability of stored data. Each solution uses a

set of known and well-established techniques to ensure privacy,

integrity and anti-censorship. However, the system impact of

choosing these specific techniques over other options is largely

ignored. This means that users do not have the means or

information to use this type of solutions and to choose the most

appropriate techniques for the desired performance and security

guarantees. This paper focus precisely on this challenge. To

the best of our knowledge, this is the first attempt to evaluate

experimentally the performance impacts of multiple security

features in the context of a storage service running across

multiple public clouds.

III. STORAGE SECURITY FOR END USERS

The term security encompasses a rich set of different

concepts, and the definition of security itself usually vary

according to the context. In this section we clarify the security

guarantees that a cloud storage system can offer. We consider

four fundamental security guarantees: confidentiality, self-

integrity, origin authentication, and anti-censorship.

Confidentiality. Confidentiality is a fundamental guarantee

offered by storage systems. It ensures that stored data cannot

be disclosed to third-party entities without the permission of

its rightful owner. This guarantee is achieved by resorting to

encryption schemes, as further discussed in Section IV. The

security of cryptosystems used for data confidentiality can

be formally quantified in different ways, such as information-

theoretic and semantic security. Confidentiality is a primordial

feature that we systematically include in the different security

configurations explored in our evaluation in Section VI.

Self-Integrity. Self-integrity protects data against unautho-

rized or unintended undetectable data modifications caused

by attackers or by data corruption. Self-integrity is typically

achieved with secure hash functions: when fetching a requested

stored block B, the system must either return the same block

B or an error; it cannot return another data block B′ �= B.

In practice, we can achieve this by having the key computed

as a cryptographically secure hash function of B, and have

the client recompute the hash from the data and check the

matching key after every read operation. A malicious server

must be able to break the hash function in order to break this

self-integrity. Self-integrity requires that metadata cannot be

tampered. In practice, metadata is small enough to be massively

replicated or kept at the client-side.

Origin authentication. Data origin authentication is a

particular instance of message authentication that allows a

storage provider receiving data to assess and verify the rightful

owner of the data. Like message authentication in general,

data origin authentication can be implemented using digital

certificates like signatures and message authenticated codes.

The server can verify that certified data comes from a party in

possession of the corresponding private key.

Anti-censorship and tamper resistance. A censorship

resistant system makes it difficult to selectively refuse to answer

requests without denying service for other unrelated requests.

The following three levels of censorship resistance (CR) were

defined in [22]:

• Perfect CR: Either all the read requests can be fulfilled,

or none can.

• Strong CR: If the system is unable to fulfill a read request,

then a set of different read requests cannot be fulfilled

(collateral damage).
• Weak (resource driven) CR: The system must spend a

large amount of hardware resources to censor a read

request.

Anti-censorship is closely related to tamper resistance. Tamper-

resistant data is usually achieved using “write-once, ready-

many” (WORM) technology. Designing software approaches

for anti-tampering is an active research area, and there is no

practically implementable solution currently available.

IV. DEPLOYMENT SCENARIOS

We consider two deployment scenarios. In the first, users’

data is stored in a single cloud storage provider, while in

the second data is stored across multiple storage providers.

These two distinct environments imply different trust models

and security mechanisms. In this section, we revise their

characteristics and discuss the security techniques that best fit

each of them for obtaining different security guarantees. These

deployment scenarios and mechanisms are then evaluated in

Section VI.

A. Single-cloud Deployment

The single-cloud scenario is representative of the way cloud

storage services are typically used. Namely, users interact with

a single cloud provider to store and fetch their data.
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Trust model. In the single-cloud deployment scenario, an

adversary has access to users’ data as soon as it has access

to the provider’s premises (e.g., it has hands-on access to the

hardware hosting the persistent storage devices). The adversary

can be internal to the cloud provider (e.g., the cloud provider

itself for commercial benefits) or an external unauthorized user

(e.g., hacker). The adversary can arbitrarily manipulate users’

data. We consider the client to be trusted. The client-to-cloud

network communications are protected and assured by secure

protocols (e.g., HTTPS).

Security mechanisms. Security mechanisms must be ap-

plied at the client-side, as the cloud storage is untrusted. This

entails encrypting data before uploading it to the cloud. In the

single-cloud scenario, we only consider computationally-hard

encryption techniques [9], such as symmetric and asymmetric

encryption. Symmetric encryption guarantees data confiden-

tiality. We resort to the AES block cipher with a 128-bit

key size in CBC (Cypher Block Chaining) mode, which is

a commonly used setup [23]. AES is nowadays considered

secure and industrial providers are currently phasing out its

predecessor DES [24].

Asymmetric encryption can also be used to achieve data

confidentiality. It typically requires extra computational power,

when compared with the symmetric approach, especially when

dealing with large files [7]. For this reason, in the paper, we

just use it to sign the users’ data and to verify its authenticity.

Multiple signature schemes are available. The most relevant

ones are based on RSA or DSA, but we only consider RSA as

it is faster on signature verification and typically users perform

more verifications than signatures [25, 26].

Finally, cryptographic hash functions can be used to generate

data digests and to support integrity guarantees. MD5 [27]

and SHA [28] digests are commonly used cryptographic hash

functions. In our evaluation, we use SHA-based message digests

(in its most secure variant SHA-512), as it used in public

software package repositories. SHA is also used with RSA to

generate the digital signatures.

Fault tolerance. In a single-cloud scenario, as soon as the

cloud-storage provider is unreachable, users lose access to their

data. Moreover, if the service fails and data is lost permanently,

the corresponding users’ data cannot be recovered.

B. Multi-cloud Deployment

In a multi-cloud deployment context, data is stored across

several storage providers. This scenario brings several benefits:

performance, storage capacity, data availability and security [6,

7, 8]. Under this scenario, we must guarantee that a single

corrupted cloud provider does not lead to a full disclosure of

the stored data.

Trust model. We assume that for n providers, the adversary

only has access to the data of n − 1 storage providers and

that it must be possible tolerate up to n − 1 corrupted

providers. Adversaries have the same computational powers as

the single-cloud deployment scenario, and the client-to-cloud

communications are secure.

Encoder
Python, C, C++

Clients
(benchmark)

Storage
backends

Dropbox

GDrive

KV store
Redis

Security
services

Client
Apache AB

Client
Apache AB

Proxy
Python, Bottle

POST/GET

POST/GET

GRPC/protobuf

docker

docker

docker

docker dockerAES

XOR

...

RSA

ReedS.

Block Index

Entangler

OneDrive
TCP

TCP
TCP

TCP

Fig. 1: Architecture of our experimental testbed.

Security mechanisms. Confidentiality in a multi-cloud

deployment can be guaranteed by exploiting similar encryption

mechanisms as the ones used in a single-cloud context. The

multiple clouds can be leveraged to improve data availability

and system performance. The usual workflow consists in

encrypting the data using a symmetric cipher and splitting the

encrypted data in several parts using erasure coding techniques.

The parts are then dispatched to the data stores, e.g., the public

clouds. Erasure coding allows maintaining data availability even

when several cloud providers become suddenly unreachable,

while consuming significantly less storage space than data

replication. Moreover, erasure coding reduces by a fraction the

costs of data migration from one cloud provider to another

when compared to replication [6].

Our experimental testbed implements a similar workflow.

For comparison purposes, we evaluate the performances of

a one-time pad XOR [29] as alternative to erasure coding.

XOR encryption splits the data in several blocks, but unlike

erasure coding each part does not leak any information about

the original data. On the other hand, all the parts must be

available to successfully decode the original data. This way,

in order to have data availability each part must be replicated,

thus requiring additional storage space.

As in the single-cloud deployment, SHA-512 and RSA-

based signatures are used for providing self-integrity and origin

authentication in a multi-cloud scenario.

Fault tolerance. When multiple cloud providers are avail-

able different failure scenarios can be considered depending on

the security measures being used. In particular, when deployed

without any replication, the adoption of the one-time pad does

not offer any fault-tolerance guarantees, i.e., if one of the

providers becomes unavailable, it is impossible to recover the

original data. Conversely, it is possible to support multiple

storage faults using erasure coding techniques at the cost of

increased storage overheads.

V. THE SAFESTORE SYSTEM

This section details the architecture of SafeStore, the

experimental testbed we have implemented to evaluate the

performance trade-offs of the security guarantees discussed

in Section III. In detail, we describe its components and the

implementation details.
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A. Architecture

The SafeStore architecture comprises the following com-

ponents: a storage server (“proxy”) that mediates interactions

between clients and the SafeStore system, an encoder com-

ponent, and a set of backend storage clouds (public clouds

or private servers deployed on-premises). The architecture is

depicted in Figure 1.

The proxy component acts as the SafeStore’s front-end and

is responsible for keeping a mapping between client’s files and

the actual storage backends where these are stored.1 Clients,

which run in independent nodes, contact the proxy component

to write or read data through a simple REST interface that

mimics the operating principles of well-established services like

Amazon S3. The interactions between the proxy and the clients

happen via synchronous HTTP messages over preestablished

TCP channels.

The SafeStore system is configurable and different security

mechanisms can be put in place. According to such configura-

tion, the proxy component coordinates the other components

in the system and different workflows may arise. For instance,

some configurations require a single cloud backend while others

require two or more. Upon a write request, the proxy component

asks the encoder component to encode data blocks according

to the configured security mechanisms. The resulting block

or blocks are then dispatched, by the proxy, to the storage

backends. To this end, the proxy maintains a data block index to

keep track of where data is stored at the backends. Additionally,

and for the case where anti-censorship mechanisms are in

place, the proxy also maintains an entangler component. This

component requires access to the block index component and

is placed within the proxy to leverage locality. More details

on the entangler component are presented in Section V-B.

Upon a read request for a piece of data, the proxy checks

the block index to figure out where the corresponding encoded

blocks are stored. It fetches them from the backend storage and

forwards them to the encoder that decodes the blocks before

returning the data to the client.

The encoder is co-localized within the same host as the

proxy to maximize throughput and avoid bottlenecks induced

by high pressure on the network stack. To increase the flexibility

of our testbed, our encoder provides a plugin mechanism to

dynamically load and swap different coding and cryptographic

libraries and associated bindings. This mechanism relies on

a platform-independent transport mechanism (using protocol
buffers) and a stable interface between the proxy and the

encoder. Security is ensured if both the proxy and encoder

are deployed on a trusted domain. Typically this domain can

correspond to the client premises since the computational

resources required are expected to be manageable even by

handheld devices.

1Several proxy instances can co-exist if consistency is guaranteed across
the various local mappings. However, we consider this extension out of the
scope of the present paper.

B. The SafeStore Entangler

In order to illustrate the modularity of our architecture,

we implemented a simple exclusive-or-based entanglement

approach to provide anti-censorship. The technique we im-

plemented is similar to Dagster [30]. In Dagster, the size of

documents and blocks is identical. When a new document D
must be stored, Dagster randomly chooses c blocks already

archived and xor them with D. The resulting block is then

stored. Dagster is analyzed in [31]: an attacker who wants to

censor a document must erase one of its c+1 blocks, and this

will destroy on average O(c) other documents in the system.

Older documents are more protected than newer ones. Dagster

thus provides a low level of Strong CR, low in the sense that

the average amount of collateral damage is in O(c). We use

c = 5 in our implementation.

C. Implementation Details

Our implementation choices have been largely driven by

performance and programming simplicity considerations, as

well as by constraints from the storage backends interfaces.

The proxy component is implemented in Python (v2.7.10)

and exploits the exporting facilities of the Bottle [32] framework

(v0.12.9). The proxy handles POST and GET requests via the

WSGI [33] Web framework.

The encoder, also written in Python, integrates with various

encoding libraries. Each library is wrapped exposing the same

API to the encoder allowing the system to be expanded and to

abstract SafeStore from the implementation details of each

library. This allows SafeStore to support not only Python

libraries but also native ones.

We leverage Cryptography [34], a python library that exposes

a wide range of cryptographic primitives with an easy to use

and well documented API. Namely, this library provides the

AES and RSA cyphers by wrapping OpenSSL’s cryptographic

protocol implementations [35].

We use our own implementation for the one-time pad XOR

encoding driver that resorts to the numpy [36] library to

optimize vector computation. As the erasure coding driver,

SafeStore supports Jerasure, an efficient Cauchy Reed-Solomon

driver implemented in C/C++ that is exported by the PyE-

Clib [37] library (v1.2).

For the client side, we built a suite of micro- and macro-

benchmarks, leveraging Apache Bench [38] (v2.3), to measure

the throughput and latency of client storage requests. The CPU

and memory measurements presented in the evaluation are

gathered with the dstat tool [39].

Finally, we have implemented drivers for four storage

backends. First, we deployed a set of on-premises storage

nodes using Redis [40] (v3.0.7), a lightweight yet efficient

in-memory key-value store. Redis tools provide easy-to-use

probing mechanisms (e.g., the redis-cli command-line tool),

which allowed us to measure the impact of the several security

combinations used in our evaluation. Second, we have imple-

mented drivers for the three most widely used cloud storage

services: Dropbox [41], Google Drive [42], and Microsoft

OneDrive [43]. The drivers are implemented leveraging the
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official Python SDKs from each provider. Similarly to the

approach taken with the encoding component, storage backends

are wrapped to expose a common interface with the required

set of operations, i.e. store, fetch and delete data, which allows

to easily plug-in new storage backends in the future. Overall,

our implementation consists of 2,723 lines of Python code, all

components included.

VI. EVALUATION

This section presents our evaluation study of the different

security guarantees. First we describe the evaluation settings

and related contextual information. Then, we organize the

reminder in two sets of experiments. In the micro-benchmarks

of Section VI-B we evaluate specific architecture components

in isolation. The macro-benchmarks stress the complete system

as a whole along different axes and workloads: the throughput

(Sections VI-C), the resource usages (Section VI-D), the entan-

glement overhead (Section VI-E), and the storage requirements

in Section VI-F.

The experiments discussed next resort to a representative

set of encryption techniques, block size configurations and

backend storage providers used in previous relevant work,

which is discussed in Section II. Additionally, our experiments

evaluate the resource consumption of different cryptographic

techniques, which is often ignored in previous work.

A. Evaluation Settings

We deploy our experiments over a cluster of machines

interconnected by a 1Gb/s switched network. Each physical

host features 8-Core Xeon CPUs and 8GB of RAM. We deploy

virtual machines (VM) on top of the hosts. The KVM hyper-

visor, which controls the execution of the VM, is configured

to expose the physical CPU to the guest VM and Docker

containers by mean of the host-passthrough [44] option, to

allow the encoders to exploit special CPU instructions. The

VMs leverage the virtio module for better I/O performances.

We deploy Docker (v0.10) containers on each VM (1

container per VM) without any memory restriction to minimize

interference due to co-location and maximize performance. In

particular the proxy, the encoder and the Redis storage nodes

reside in isolated containers, each of them running in VMs

executed by separated hosts. Similarly, the client that injects

requests into the testbed runs in an Docker container running

in a separate host. We use regular accounts for the selected

cloud providers (Dropbox, GDrive, and OneDrive).

B. Micro-benchmark — Throughput

In evaluate the system impact of the security measures

considered in our study, we begin by a set of micro-

benchmarks, intended to reveal the trade-offs. In detail, we

consider 4 different encoder combinations, for distinct security

measures. Conf. provides data confidentiality (aes, cauchy,
xor). Conf.+Int. also includes self-integrity (aes_sh_512,
cauchy_sha_512, xor_sha_512). Conf.+Sign. offers data con-

fidentiality and origin authentication (aes_rsa, cauchy_rsa,

Deployment Drivers Guarantee

Conf. Int. Sign.

Single-Cloud

aes
√ × ×

aes_sha_512
√ √ ×

aes_rsa
√ × √

aes_rsa_sha_512
√ √ √

Multi-Cloud

cauchy
√ × ×

cauchy_sha_512
√ √ ×

cauchy_rsa
√ × √

cauchy_rsa_sha_512
√ √ √

xor
√ × ×

xor_sha_512
√ √ ×

xor_rsa
√ × √

xor_rsa_sha_512
√ √ √

TABLE II: Deployment targets, drivers and security guarantees.

xor_rsa). Finally Conf.+Int.+Sign. provides data confidential-

ity, self-integrity, and origin authentication (aes_rsa_sha_512,
cauchy_rsa_sha_512, and xor_rsa_sha_512). The properties

of each driver configuration, including the security features

that each guarantee, are summarized in Table II.

We encode and decode randomly generated binary blocks

of increasing size (4MB, 16MB, and 64MB). Encoding and

decoding throughputs are presented in Figure 2 (top) and

Figure 2 (bottom) respectively. For each configuration, we

present the average results observed for encoding/decoding 50

blocks. As expected, the best encoding throughputs are achieved

with symmetric encryption (i.e., aes driver with 102.5MB/s)

since it avoids manipulating multiple data blocks. In fact, the

encoding mechanism of the xor driver requires generating new

random data blocks, a time-consuming operation leading to

higher overhead. On the other hand, the decoding operation

is reduced to the xor operation itself, which is very efficient.

Consequently, the xor is significantly more efficient in decod-

ing, and it consistently achieves the best decoding performance

across the full block size range, and up to 195.7MB/s for the

16MB case.

As expected, combining several security options impacts

negatively over the throughput. The most secure combination

(Conf.+Int.+Sign.) consistently performs poorly compared to

the other combinations, with throughput slowdown in the order

of 2× for encoding and 5× for decoding.

C. Macro-benchmark — Single-cloud Latency

In the reminder of the evaluation, we present an extensive

set of macro benchmarks, where the full stack of the system is

under test. First, we present the observed latency performance

of the system. We configure the testbed to operate in single-

cloud mode using Dropbox, OneDrive, and GDrive as cloud

backends. We include the same results executed against a local

Redis storage backend deployed locally on our cluster. For

each scenario, we store 250 blocks of 1MB. We measure the

insertion latency for each block. Figure 3 presents our results.

We use a heatmap representation with shades of gray to show at

once the observed latencies across the 48 distinct configurations.

Each cell of the heatmap shows the average value of the

measured latencies for the corresponding configuration.
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Fig. 2: Micro-benchmark: encoding and decoding throughput.

Three factors influence the reponse time of storage requests:

1) security measure complexity: raising the computing

time as the number of security measures combined grows

2) number of blocks generated: raising the number of

connections made to the cloud storage as the number of

blocks generated by erasure coding or xoring grows

3) proxy to cloud storage latency: raising the overall

response time when leaving the local network

Each configuration displayed in the heatmap is a variation on

one or more of these factors.

Based on proxy-to-cloud latency, we can split the heatmap

in two parts: the first column with Redis in the same cluster

and the last three with the remote cloud storage configurations.

This distinction highlights or rubs out the noticeable differences

of performance between the various security measure combina-

tions. Indeed the impact of computation heavy processing such

as xor is more significant when running the experiments on

the local redis database. In the first column, the response time

of any combination using xor is systematically longer than the

other combinations. But when run over remote cloud storage

(the three right-most columns), the impact of the number of

blocks to store using erasure coding (cauchy) dwarfs the longer

computing time in the overall response time. For instance, in the

Google Drive scenario, the average latency for the cauchy_rsa
case is 30.2 s, whereas aes_rsa and xor_rsa achieve 1.3 s and

4 s respectively. While expected, the overhead of sending a

larger number of blocks to components located out the cluster

is not the only factor affecting the results. The large variance

in response time to each of the providers, in particular Google

drive, has previously been discussed [8].

D. Macro-benchmark — Resource Usage

Next, we evaluate the resource requirements (CPU and live

memory) for each of the security configurations. These results

intend to unveil the hidden costs that clients need to face when

using systems that offer such security guaranteed deployed in

environments with constrained resources (embedded devices,

smartphones, etc.).

xor_rsa_sha_512
cauchy_rsa_sha_512

aes_rsa_sha_512
xor_rsa

cauchy_rsa
aes_rsa

xor_sha_512
cauchy_sha_512

aes_sha_512
xor

cauchy
aes

Redis Dropbox Onedrive GDrive
1766.93 4574.89 8611.84 9973.53
1096.26 16253.8 1207.57 30682.8
992.652 1618.06 2537.66 3280.8
1731.65 1511.51 5569.32 4201.57
1044.7 8889.26 19461 32560.3
978.538 1625.14 2012.08 1378.9
1811.75 3955.87 5423.2 4110.18
1024.76 13581.2 19684.3 28236.4
894.512 1197.4 2264.96 1386.13
1715.25 4530.74 5257.42 4202.96
981.862 13582.9 19250.2 30979.8
881.598 1310.87 2279.04 1456.03
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Fig. 3: Macro-benchmark: average latency per block for single-

cloud deployments. Each cell’s label indicates the average

latency for the given pair of driver/cloud provider.

Table III presents a comprehensive survey of our experi-

mentation. We evaluate single- and multi-cloud deployment

scenarios, for each of the different combinations of security

mechanisms.

For the single-cloud deployment we consider aes as the

baseline configuration, and report the results for the other

drivers as a ratio against it. Similarly, for the multi-cloud

deployment, we consider cauchy and xor as the baseline

measurements and present the other results by comparison.

CPU usage does not vary significantly between different ap-

proaches for the encoding process. However, different security

techniques yield contrasting resource usage in the decoding

process. The most CPU-demanding encoder component is the

xor_rsa_sha_512, with an increase of 31.94% for 4MB blocks

during decoding operations.

We also measured the live memory consumption of each

configuration. Once again, the xor_rsa_sha_512 reveals to be

the most memory-demanding configuration with an increase

of 16.99% over the steady operational mode.

E. Macro-benchmark — Multi-cloud Entanglement

We evaluate the overhead of the entanglement (see Sec-

tion V-B) by configuring our testbed to use three distinct

public cloud backends at the same time, namely Google

Drive, Dropbox, and OneDrive. We choose the driver com-

binations that provide the higher degree of security in a

multi-cloud deployment, in particular cauchy_rsa_sha_512
and xor_rsa_sha_512. We compare the latency of inserting

250 blocks of 1MB with and without entanglement for both

drivers. Once blocks are entangled, the proxy dispatches them

to the chosen provider in a round-robin fashion to spread

the load among them. We present the cumulative distribution

function (CDF) of the results for cauchy_rsa_sha_512 and

xor_rsa_sha_512 in Figure 4 and Figure 5 respectively.

Our observations are twofold. First, the exclusive-or based

driver xor_rsa_sha_512 is considerably faster than the erasure-

coding driver cauchy_rsa_sha_512. For example, the 50th
percentile of the former is below 4 s whereas the latter is at

14.7 s. This results from the fact that the exclusive-or is a

very computationally efficient operation. Second, the overhead

induced by the entanglement phase is modest. In particular,

in the case of cauchy_rsa_sha_512, the entanglement only

adds a +18.1% latency overhead for the 95th percentile of
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Deployment Drivers
Encoding Decoding

CPU Memory Used CPU Memory Used
4MB 16MB 64MB 4MB 16MB 64MB 4MB 16MB 64MB 4MB 16MB 64MB

Single-Cloud
aes_sha_512 5.93% 1.62% 0.81% 1.74% 0.22% -1.35% 16.54% 12.51% 9.01% 3.86% 4.11% 5.85%

aes_rsa 15.25% 2.38% 0.90% 3.47% 1.44% -0.74% 19.90% 14.27% 10.09% 6.51% 5.84% 6.99%
aes_rsa_sha_512 11.50% 3.04% 1.43% 5.79% 2.43% -1.27% 24.55% 19.21% 13.41% 6.75% 9.31% 8.62%

Multi-Cloud

cauchy 9.84% 10.81% 10.62% 532 917 2413 8.17% 9.57% 9.01% 439 497 699
cauchy_sha_512 -1.32% -1.94% 1.51% 0.38% 0.00% 0.12% 12.48% 9.30% 9.32% -0.23% 0.80% 1.57%

cauchy_rsa -0.20% -1.11% 1.98% 4.70% 1.64% 0.87% 14.32% 10.24% 10.21% 1.59% 3.02% 2.86%
cauchy_rsa_sha_512 1.12% 0.00% 2.82% 3.76% 1.09% 0.62% 19.58% 14.63% 14.32% 2.51% 4.63% 4.01%

xor 10.49% 11.20% 10.91% 521 887 2322 7.20% 8.12% 7.85% 409 471 705
xor_sha_512 -1.05% 0.09% 0.55% 3.54% 2.03% 1.94% 19.17% 20.81% 19.36% 5.13% 7.43% 8.37%

xor_rsa 0.67% 0.45% 1.19% 8.45% 5.30% 2.93% 23.47% 23.03% 20.51% 12.96% 16.99% 12.62%
xor_rsa_sha_512 0.57% 0.63% 1.65% 5.76% 4.40% 3.96% 31.94% 30.91% 28.66% 9.05% 12.95% 13.33%

TABLE III: Resource consumption of the security mechanisms. We evaluate three distinct configurations: Rows 1-3 for

single-cloud, Rows 4-7 for the cauchy driver on multi-clouds, and Rows 8-11 for the xor driver on multi-clouds. The first row

of each configuration on the multi-cloud deployments defines the baseline, and the subsequent rows indicate the overhead over

the baseline.
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Fig. 4: Macro-benchmark: latency distribution (CDF) for the

cauchy_rsa_sha_512 driver with and without entanglement

over 3 cloud providers.
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3 cloud providers.

the blocks. In the xor_rsa_sha_512 scenario, this overhead

is lowered to +0.3%. These results prove that a multi-cloud

entanglement scheme can be practically operated by clients

with very low performance gaps when compared to the default,

non-entangled operational mode.

F. Macro-benchmark — Storage

Finally, we consider storage space requirements. In a multi-

cloud scenario, the storage providers need to accommodate

more than the source data’s original size. The impact of the

erasure coding techniques, as well as xoring data in terms of

storage usage are presented in Table IV. The original block size
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Fig. 6: Macro-benchmark: storage overhead.

Driver Growth 4MB 16 MB 64MB
Erasure (0.10 ∗ b) ∗ 14 6MB 23MB 94MB
XOR b ∗ 3 12MB 50MB 201MB

TABLE IV: Disk space increase.

is b. In our implementation, the XOR technique requires n times

more space than the original size, with n being the number of

storage providers. The erasure-coding drivers will conversely

require much less space. For instance, for 64MB blocks,

cauchy_rsa_sha_512 spends an extra 45.88% of storage space.

We confirmed these observations by measuring the effective

storage overhead induced by all the drivers when storing 500

files of 2MB each on a local Redis server. The results are

presented in Figure 6.

Note that evaluating the storage usage impact of security

techniques is of particular relevance since it typically implies

additional costs. As a result, storage space is a key variable to

take into account in the decision of which security features to

add to a particular system.

G. Lessons Learned

Considering the different evaluation experiments, there are

some results that stand out. First, the aes encryption driver

proved to be the most balanced solution with a virtually

constant performance across all benchmarks. As seen in Figure

2, the encoding and decoding throughput is very similar across
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benchmarks, only with an average difference of 20MB/s at

most. Additionally, it is observable that the measured latency

of block encryption with aes is very similar to the latency of

uploading a block to a storage provider. This follows from

the fact that aes encryption does not increase block size and

that the latency of the computational part of the algorithm is

negligible.

Secondly, the cauchy driver has a similar discrepancy

between the encoding and decoding throughput (30MB/s on

average) but, in absolute values, it always exhibits lower

throughputs when compared with aes encryption. Moreover,

the need to generate 14 blocks has a small impact on the

throughout when considering a low-latency deployment such

as Redis. Conversely, when using cloud providers, the impact

is highly significant. This also has a significant negative impact

when using entanglement on the proxy, where in the worst case

it has a difference of 8s. We note however that the number

of generated blocks can be configured and cauchy is the only

driver capable of tolerating the failure of a cloud provider.

Thirdly, despite the fact that the xor driver has the biggest

difference of throughput in the micro-benchmark, it has better

performance than the cauchy driver on a real deployment. This

is due to the fact that only three blocks are generated by the

driver, which implies less uploaded data and, consequently,

less communication latency. This happens with and without

entanglement. Notably, while in the worst case the xor
driver with entanglement exhibits a latency around 10s, the

cauchy driver with entanglement only achieves comparable

performance in the best case scenario.

In summary, the aes driver protects the users information

with minimal overhead, but stores all the information in a

single cloud. The cauchy driver ensures the privacy of the users

data while supporting the failure of a single cloud provider,

however this has a significant cost in processing and latency.

For a middle ground approach, the xor driver protects the users

information by dividing the information among multiple cloud

providers with a smaller cost on latency but does not support the

failure of a cloud. Finally, security measures such as integrity,

origin authentication and anti-censorship have a relatively small

impact on the latency when considering baseline encryption

and provider latencies.

Regarding the latency across cloud providers, if the aes
encryption on Redis is considered as a baseline, Dropbox

exhibits the lowest latency on average, with an increase of

77%. Google Drive increases the latency by 108 %. Finally, in

our experiments Onedrive had the worst latency, with a latency

increase of 192%.

VII. CONCLUSION

In this practical experience report, we have compared a wide

range of security mechanisms that can be used to protect data

stored in the cloud. Our experimental study sheds light on the

performance and memory overheads incurred with increasing

levels of security. Unlike previous studies, we consider the

trade-offs of security mechanisms when used in isolation, as

well as the security guarantees they provide, so that users can

take informed decisions about which ones to use depending

on their specific needs.

Our experiments were conducted using a testbed that we

built and deployed across several standard cloud-based storage

services. Unsurprisingly, we observe noticeable degradation

of the throughput of block encoding with increasing layers of

security. The impact of security guarantees is mainly visible

in terms of CPU usage, which in turn yields increased latency,

but we also observe some variations in terms of memory

consumption. Furthermore and as expected, throughput is

generally higher and more stable in single-cloud deployments.

To sum up, the lessons to take away from our study are that

there is no single combination of security measure that performs

best for all applications. Instead, users need to carefully chose

the minimum set of mechanisms that can match their security

requirements. In turn, cloud provides need to provide security

measures that can be freely combined instead of proposing a

“complete package”, as every additional security layer comes

with an associated cost. We hope that our experimental results

will provide valuable insights to both service providers and

their users, and can be instrumental for improving cloud-based

storage systems and developing applications that can best

leverage them.
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