DEDIS: Exact Deduplication for Primary Distributed Storage*

J. Paulo

J. Pereira

University of Minho & INESC TEC
{jtpaulo,jop} @di.uminho.pt

Abstract

The removal of duplicate data from primary storage vol-
umes in a cloud computing environment is increasingly
desirable, as the resulting space savings contribute to the
cost effectiveness of a large scale multi-tenant infrastruc-
ture. However, traditional archival and backup dedupli-
cation systems are not suited for large scale virtualized
infrastructures and the I/O demanding applications there
deployed. In fact, few deduplication systems address pri-
mary data and are either restricted to special file systems
or centralized designs.

This paper presents DEDIS, a dependable and fully dis-
tributed deduplication system for large-scale cloud infras-
tructures with a common primary storage pool abstrac-
tion. Unlike previous proposals, DEDIS does not depend
on specific file systems with built-in aliasing operations
while ensuring low storage 1/O overhead, as described in
our preliminary evaluation results. In more detail, DEDIS
is implemented within Xen as a blktap driver and per-
forms off-line deduplication among remote virtual ma-
chines.

1 Introduction and Background

Deduplication, as has been in use for a long time in
archival and backup systems, is an appealing technique
to mitigate the costs of storing large volumes of data [6].
The emergence of cloud computing brings novel opportu-
nities, needs, and means to apply deduplication to general

*The title of the poster is also "DEDIS: Exact Deduplication for Pri-
mary Distributed Storage”. If accepted, we will be presenting the poster
at Eurosys 2013 without a demo.

purpose primary storage volumes. Namely, cloud infras-
tructures must store persistently a large amount of virtual
machine (VM) volumes that would benefit from dedupli-
cation space savings. In fact, existing studies show that
deduplication can reduce the space occupied by general
purpose VMSs up to 80% [1].

Primary storage deduplication raises new challenges
that are not addressed in traditional archival/backup dedu-
plication systems. Most of these systems use in-band
deduplication in which deduplication is performed in the
storage write path before storing the written data persis-
tently [6]. Such decision avoids writing duplicate content
to the storage but, for I/O intensive applications, perform-
ing deduplication in the critical I/O path may introduce
unacceptable overhead in write requests latency. In order
to reduce the I/0 latency overhead, some systems perform
off-line deduplication that decouples deduplication from
storage I/0 and performs both asynchronously, which al-
lows reducing the latency of storage 1/O operations but
requires additional storage space as data is only shared af-
ter being stored [1]. Other systems leverage data temporal
and spatial locality for performing in-band deduplication
without introducing significant storage I/O overhead [5].
However, for primary workloads exhibiting poor locality,
these systems obtain increased I/O latency and reduced
space savings. Moreover, most backup and archival stor-
ages assume immutable data, thus avoiding the need of
copy-on-write (CoW) to prevent updates on data shared
by several entities. Such does not hold true for primary
storages where CoW mechanisms are required, increas-
ing the complexity of reference management and impact-
ing the latency of storage requests. Finally, few primary
storage deduplication systems are thought for distributed
infrastructures and either have centralized components or



depend on specific cluster file systems with special prim-
itives for performing deduplication, that may pose as per-
formance bottlenecks [1].

Next we present DEDIS, an off-line fully distributed
deduplication system for a distributed infrastructure with
a common storage pool abstraction where VMs primary
volumes are persisted. DEDIS introduces negligible stor-
age I/O overhead while providing exact deduplication,
thus eliminating all duplicate data found across remote
VM volumes. DEDIS does not depend on locality or spe-
cial file system assumptions, requiring only a mechanism
for intercepting I/O requests, which is common in most
hypervisors.

2 DEDIS

Next, we overview DEDIS architecture and present some
preliminary evaluation results.

Interceptor. In each server, a local module intercepts
VMs 1I/0 requests, at the block granularity, and maps log-
ical to physical storage addresses. The physical loca-
tion of each logical block is stored persistently as meta-
data. Physical block aliasing is enabled by pointing logi-
cal blocks to the same physical address. Shared physical
addresses are marked as CoW for preventing updates that
are written to an unused storage block.

Distributed Duplicates Index (DDI). A distributed mod-
ule indexes the primary storage’s blocks with unique con-
tent. For each block (entry), a checksum of the block’s
content, the block’s physical address and the number of
logical addresses sharing that block are stored. This in-
formation is used for aliasing duplicate blocks and to per-
form reference management and garbage collection of un-
referenced blocks. Index entries are distributed over sev-
eral servers and are located with a message routing ser-
vice. Each entry has a small size allowing to store several
entries in the same node and requiring a small number of
DDI nodes for large clusters.

Share. I/O write requests are registered by local intercep-
tors and are collected asynchronously by share module
that runs locally in each server. For each written block,
the block is marked preemptively as CoW, a signature of
its content is generated and a remote call to the DDI is
made to check for duplicates. If a match is found, the VM
logical address is updated to the shared block and the old

block freed, otherwise a new entry is added at the DDI so
that future blocks with the same content can be aliased.

Garbage Collector (GC). The GC processes copied
blocks or, in other words, aliased blocks that were updated
and are no longer being referenced by a certain logical ad-
dress. The number of references to a specific block can be
consulted and decremented at the DDI and blocks can be
freed if they are no longer being referenced.

Extent server. The extent server is a distributed coordi-
nation mechanism that manages a common pool of stor-
age unused blocks. Unused blocks are necessary when a
logical volume is created or when an aliased block is up-
dated (i.e., copied on write). Storage extents are allocated
with a large granularity and are then, within each physical
host, used to satisfy individual block allocation requests,
thus reducing the overhead involved in using a remote ser-
vice [2]. Blocks freed by GC and Share are placed in the
local extents and can be sent back to the extent server.

DEDIS was model checked and is resilient to crash fail-
ures and restart of nodes by using transactional logs [4].
Periodical checkpoints prune old log entries and update
a persistent version of the logical to physical mapping,
making recovery faster. Moreover, an open-source proto-
type of DEDIS! is implemented within XEN blktap mech-
anism and was evaluated with DEDISbench, an open-
source benchmark that generates realistic content distribu-
tions, which is not supported in traditional disk I/O bench-
marks [3]. This evaluation shows that DEDIS design and
other optimizations, omitted from this paper due to space
reasons, allow achieving negligible overhead, when com-
pared to the default XEN blktap driver, with both inten-
sive I/O and deduplication running concurrently. Namely,
with DEDISbench simulating a stress I/O load in 6 VMs
distributed among 2 machines, the overhead of DEDIS in
I/O throughput is less than 18% and for a stable I/O load
(50% of the stress load) this overhead is negligible. The
evaluation also shows that the space saved with deduplica-
tion compensates the algorithm’s metadata overhead and
that the CPU, RAM and network resources usage is not
significant.

ttps://launchpad.net/holeycow/
block-based-deduplication



3 Conclusion and Future Work

We present DEDIS, a fully distributed off-line dedupli-
cation system for cloud computing primary storage in-
frastructures. DEDIS only requires a mechanism for in-
tercepting I/O requests, allowing to implement it with
most hypervisors and optimizing the aliasing and copy-
on-write mechanisms that are bottlenecks of current sys-
tems. Our preliminary results show that DEDIS achieves
low storage I/O overhead while actively sharing blocks,
thus not requiring deduplication to run in off-peak peri-
ods as in most off-line deduplication proposals. Currently,
DEDIS prototype is being further evaluated and optimized
in order to further prove that it is possible to achieve low
storage I/0O overhead and scale to large infrastructures.

Acknowledgements

Partially funded by Ph.D grant SFRH/BD/71372/2010.

References

[1] Austin T. Clements, Irfan Ahmad, Murali Vilayannur,
and Jinyuan Li. Decentralized Deduplication in SAN
Cluster File Systems. In USENIX Annual Technical
Conference (ATC), 2009.

[2] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully,
Geoffrey Lefebvre, Michael J. Feeley, Norman C.
Hutchinson, and Andrew Warfield. Parallax: Virtual
Disks for Virtual Machines. In European Conference
on Computer Systems (EuroSys), 2008.

[3] J. Paulo and J. Pereira. Dedisbench: A benchmark for
deduplicated storage systems. In International Sym-
posium on Secure Virtual Infrastructures (DOA-SVI),
2012.

[4] Joao Paulo and Jose Pereira. Model checking a de-
centralized storage deduplication protocol. In Fast
Abstract in Latin-American Symposium on Depend-
able Computing, 2011.

[5] Kiran Srinivasan, Tim Bisson, Garth Goodson, and
Kaladhar Voruganti. iDedup: Latency-aware, Inline
Data Deduplication for Primary Storage. In USENIX

Conference on File and Storage Technologies (FAST),
2012.

[6] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding
the Disk Bottleneck in the Data Domain Deduplica-
tion File System. In USENIX Conference on File and
Storage Technologies (FAST), 2008.



