
DEDISbench: A Benchmark for

Deduplicated Storage Systems

J. Paulo P. Reis J. Pereira A. Sousa

High-Assurance Software Lab (HASLab)

INESC TEC & University of Minho

Abstract

Deduplication is widely accepted as an effective technique for eliminat-

ing duplicated data in backup and archival systems. Nowadays, deduplication

is also becoming appealing in cloud computing, where large-scale virtual-

ized storage infrastructures hold huge data volumes with a significant share

of duplicated content. There have thus been several proposals for embedding

deduplication in storage appliances and file systems, providing different per-

formance trade-offs while targeting both user and application data, as well as

virtual machine images.

It is however hard to determine to what extent is deduplication useful in

a particular setting and what technique will provide the best results. In fact,

existing disk I/O micro-benchmarks are not designed for evaluating dedupli-

cation systems, following simplistic approaches for generating data written

that lead to unrealistic amounts of duplicates.

We address this with DEDISbench, a novel micro-benchmark for eval-

uating disk I/O performance of block based deduplication systems. As the

main contribution, we introduce the generation of a realistic duplicate distri-

bution based on real datasets. Moreover, DEDISbench also allows simulating

access hotspots and different load intensities for I/O operations. The useful-

ness of DEDISbench is shown by comparing it with Bonnie++ and IOzone

open-source disk I/O micro-benchmarks on assessing two open-source dedu-

plication systems, Opendedup and Lessfs, using Ext4 as a baseline. As a

secondary contribution, our results lead to novel insight on the performance

of these file systems.

1 Introduction

Deduplication is now accepted as an effective technique for eliminating duplicated

data in backup and archival storage systems [17] and storage appliances [20], al-

lowing not only to reduce the costs of storage infrastructures but also to have a

positive performance impact throughout the storage management stack, namely, in

cache efficiency and network bandwidth consumption [13, 12, 10]. With the cloud

1

1 INTRODUCTION 2

computing paradigm, applying deduplication to large scale virtualized infrastruc-

tures is an emerging trend. In fact, recent studies show that up to 80% of space

can be reclaimed for virtual machines with general purpose data [7, 4] and up to

95% for system images in a typical cloud provider [8]. Most strikingly, our pre-

vious research shows that approximately 16% of space savings can be achieved

even within the confined possibilities of the working files of a research group [16].

These studies also show that these high space saving rates can still be achieved

while providing security and privacy for client’s data [13].

Deduplication in cloud computing infrastructures raises new challenges for I/O

performance and data consistency that are not addressed in backup deduplication.

Some cloud applications will access and modify stored data, which we refer as

active storage data, in a frequent basis and with strict disk I/O performance re-

quirements, which is not assumed for backup storage data. Backup storage data

is immutable and consequently, shared data will never be modified, thus discard-

ing the need of copy-on-write mechanisms to ensure that a storage region is not

rewritten while being shared by several entities, which would lead to data cor-

ruption. However, copy-on-write mechanisms deteriorate the performance of disk

I/O operations by including additional computation in the requests. Yet another

challenge arises when deduplication is deployed on a decentralized infrastructure

and performed among remote nodes, requiring distributed metadata for indexing

the stored content and finding duplicated information. Most deduplication systems

use in-band, also know as inline deduplication, where disk I/O write requests to

the storage are intercepted and shared before actually being written to the storage.

This way, only non-duplicated data is actually written, saving additional storage

space but including metadata look up operations inside the critical I/O path, thus

increasing I/O latency.

Having in mind these performance challenges and the recent sudden growth of

work in this area, it is necessary to have proper benchmarking tools, with realistic

workloads, for evaluating the performance of disk I/O when using deduplication

systems. Such tools are also necessary for backup deduplication systems despite

the distinct requirements. Previous work analyzed 120 datasets used in deduplica-

tion studies and concluded that these datasets cannot be used for comparing dif-

ferent systems [18]. Most disk I/O benchmarks do not use a realistic distribution

for generating data patterns and, in most cases, the patterns written either have the

same content, for each write operations, or have random patterns [5, 9, 3]. If the

same content is written for each operation, the deduplication engine will be over-

loaded with share operations, which will affect the overall performance. Moreover,

if this content is rewritten frequently, the amount of copy-on-write operations will

increase considerably the I/O operations latency. On the other hand, writing al-

ways random content will generate few duplicates and the deduplication systems

will be evaluated under a minimal sharing load. Note that generating an unrealistic

content workload will affect the disk I/O performance and also the space savings,

sharing throughput and resource usage of the deduplication system [18]. Some

benchmarks address this in content generation by defining a percentage of dupli-

2 DEDISBENCH 3

cated content over the written records [14] or the entropy of generated content [2].

However, these methods are only able to generate simplistic distributions that are

not as realistic as desired, or present still preliminary work where several details

and proper implementation and evaluation are still missing [18].

We present DEDISbench, a synthetic disk I/O micro-benchmark suited for

block based deduplication systems that introduces the following contributions:

• Generation of realistic content distributions, specified as an input file, that

can be extracted from real datasets with DEDISgen, an analysis tool also

presented at this paper.

• Introduction of an hotspot random distribution, based on TPC-C NURand

function [19, 16], that generates access hotspots regions for disk I/O opera-

tions.

• I/O operations, for each test, can be performed at a stress load, i.e. the maxi-

mum load handled by the test machine, or at a nominal load, i.e. the through-

put of I/O operations is limited to a certain value.

Note that DEDISbench simulates low-level I/O operations and does not fo-

cus on generating realistic directory trees and files like other benchmarks [6, 2,

18, 3, 9]. Nevertheless, such benchmarks are also referred along this paper and

compared with DEDISbench in terms of content generation and accesses patterns.

DEDISbench is evaluated and compared directly with Bonnie++ and IOzone, the

two open-source micro-benchmarks that most resemble DEDISbench in terms of

the suite and aim of disk I/O tests.

Section 2 presents DEDISbench design, implementation and features, includ-

ing the novel content and access pattern distributions. Section 3 compares the con-

tent and access pattern distributions generated by DEDISbench, Bonnie++ and IO-

zone. Additionally, this section evaluates Opendedup [15] and LessFS [11] dedu-

plication systems with these three benchmarks and compares their performance

with Ext4, a file system without deduplication. Section 4 introduces relevant work

and their main differences from DEDISbench. Finally, Section 5 concludes the

paper and points DEDISbench main contributions.

2 DEDISbench

This section starts by presenting a global overview of DEDISbench design and

implementation and then, the generation of realistic content and access pattern

distributions are described in more detail.

2.1 Basic Design and Features

The basic design and features of DEDISbench resemble the ones found in Bon-

nie++ [5] and IOzone [14] that are two open-source synthetic micro-benchmarks

2 DEDISBENCH 4

I/O request
launcher

1. Get request
offsetAccess

pattern
generator

Content
Generator

2. Get request
content

3. Perform I/O
operation

Figure 1: Overview of I/O request generation.

widely used to evaluate disk I/O performance. DEDISbench is implemented in C

and allows performing either read or write block disk I/O tests, where the block

size is defined by the user. I/O operations can be executed concurrently by several

processes with independent files, being the number of processes and the size of

process files pre-defined by the users. Moreover, the benchmark can be configured

to stop the evaluation when a certain amount of data has been written or when a

pre-defined period of time has elapsed, which is not common in most I/O bench-

marks. Yet another novel feature of DEDISbench is the possibility of performing

I/O operations with different load intensities. In addition to a stress load where the

benchmark issues I/O operations as fast as possible to stress the system, DEDIS-

bench supports performing the operations at a nominal load, specified by the user,

thus evaluating the system with a stable load. Few I/O benchmarks support both

features, as stated in Section 4.

Figure 1 overviews DEDISbench architecture. For each process, an indepen-

dent I/O request launcher module launches either read or write I/O block opera-

tions, at nominal or peak rates, until the termination condition is reached. For each

I/O operation, this module must contact the access pattern generator for obtain-

ing the disk offset for the I/O operation (1) that will depend on the type of access

pattern chosen by the user and can be sequential, random uniform or random with

hotspots. Next, the I/O request launcher module contacts the content generator

module for obtaining an identifier for the content to generate (2). Since DEDIS-

bench is aimed at block-based deduplication, this identifier will then be appended

as an unique pattern to the block’s content, ensuring that blocks with different

identifiers will not be duplicated. The generated identifiers will follow the input

file provided for DEDISbench with the information about duplicates distribution.

Note that this step is only necessary for write I/O requests because read requests

do not generate any content to be written. Finally, the operation will be sent to

the storage (3) and the metrics regarding operations throughput and latency will be

monitored in the I/O request launcher module. Both content and access patterns

generation are further detailed next.

2.2 I/O Accesses Distribution

DEDISbench can generate sequential and random uniform access patterns for the

disk addresses accessed by I/O operations, as in IOzone and Bonnie++. These

2 DEDISBENCH 5

0 5000
1 500
5 20
30 2
...

Input File

DEDISgen

2. generate
input file

1. analyze
data set

3. generate
cumulative
distribution

DEDISbench

Figure 2: Generating and processing input content distribution file in DEDISbench.

patterns are important to measure the performance of disk arm movement when

addresses are accessed sequentially, minimizing the movements, or when the ac-

cesses are random, maximizing the arm movement. DEDISbench introduces a

novel third access pattern that simulates access hotspots, where few blocks are

accessed frequently while the majority of blocks are accessed sporadically. This

hotspot distribution is generated with TPC-C NURand function [19, 16]. TPC-C is

an industry standard on-line transaction processing SQL benchmark that mimics a

wholesale supplier with a number of geographically distributed sales districts and

associated warehouses. More specifically, the NURand function is used for gener-

ating the addresses to be written in each operation and, as we show in Section 3,

this allow us achieving a more realistic pattern, for most applications, that can be

used to uncover distinct performance issues.

2.3 Duplicates Distribution

DEDISbench main contribution is the ability to process, as input, a file that speci-

fies a distribution of duplicated content, which can be extracted from a real dataset,

and using this information for generating a synthetic workload that follows such

distribution. As depicted in Figure 2 the input file states the number of blocks

for a certain amount of duplicates. In this example there are 5000 blocks with 0

duplicates, 500 blocks with 1 duplicate, 20 blocks with 5 duplicates and 2 blocks

with 30 duplicates. This file can be populated by the users or can be generated

automatically with DEDISgen, an analysis tool that can be used for processing a

real dataset and extracting from it the duplicates information. DEDISgen is imple-

mented in C and processes data from a storage device or from files inside a specific

directory tree in the following way: Data from files or from storage devices is read

and divided into fixed size blocks, with a size chosen by the user. A SHA-1 hash

sum is calculated for each block and inserted in Berkeley DB1 in order to find du-

plicated hashes. After processing all data, the database information is transformed

into an input file suitable for DEDISbench. DEDISbench uses a default input file

based on the content distribution found on our research group storage [16], further

explained in Section 3. DEDISbench then uses the input file for generating a cumu-

lative distribution with the probability of choosing a certain block identifier, where

two blocks with the same identifier are duplicated. Then with the aid of a random

generator, a cumulative function is used for calculating, for each I/O operation, an

1Berkeley DB is used as an hash table.

3 EVALUATION 6

identifier and consequently the content to be written.

3 Evaluation

This section compares DEDISbench with IOzone and Bonnie++, which are the two

micro-benchmarks with the closest design and features.

Bonnie++ [5] is a standard I/O micro-benchmark that performs several tests to

evaluate disk I/O performance in the following order: Write tests assess the per-

formance of single byte writes, block writes and rewrites while read tests assess

byte and block reads, all with a sequential access distribution. Seek tests perform

random block reads and, in 10% of the operations, block writes by following an

uniform random distribution. The size of blocks, the number of concurrent Bon-

nie++ processes and the size of the file each process accesses are defined by the

user. All these tests are performed with a stress load and run until an amount of

data is written/read for each test. However, it is not possible to specify the content

of written blocks. Bonnie++ also tests the creation and deletion of files, which

is not contemplated in this evaluation because it is not supported by IOzone or

DEDISbench.

IOzone [14] is the I/O micro-benchmark that most resembles DEDISbench and

allows performing sequential and random uniform write and read tests. The block

size, number of concurrent processes and the size of the files of each process, are

also defined by the users. Tests are performed at a stress load and, for each test, the

user defines the amount of data to be written by each process. Unlike in Bonnie++

it is possible to define full random tests that perform either read or write random

disk I/O operations. Additionally, the percentage of duplicated inter-file and intra-

file content in each block can also be specified. However, as discussed in the next

sections, this content generation mechanism does not allow specifying a content

distribution with a realistic level of detail as in DEDISbench.

DEDISbench, IOzone and Bonnie++ have several features in common but also

differ in specific details that are discussed and evaluated thorough this section and

that influence the evaluation of deduplication systems. The remaining of this sec-

tion compares the content and disk access patterns generated by each benchmark

and points the main differences from DEDISbench. Then, two open-source dedu-

plication file systems, Opendedup and Lessfs, are evaluated with the three bench-

marks and compared with Ext4, a standard file system without deduplication, thus

allowing us to analyze how the different content and accesses distributions, used

by each benchmark, may influence the evaluation results.

3.1 Evaluation setup

All tests ran in a 3.1 GHz Dual-Core Intel Core Processor with hyper-threading,

4GB of RAM and a local SATA disk with 7200 RPMs. Unless stated otherwise,

in all tests the total amount of data written was 8GB distributed over 4 concurrent

3 EVALUATION 7

processes, each writing 2GB in an independent file. The block size chosen was

4KB for DEDISbench and Bonnie++, except in Bonnie++ single byte tests. For

IOzone, the block size chosen was 16KB in order to use the content generator and

being able to specify that 4KB of the full block were duplicated, thus simulating

a percentage of duplicated data that resembled the one used by DEDISbench. As

explained previously, DEDISbench uses a default input content distribution that

was extracted from the research data of our group [16]. Briefly, this dataset has

approximately 1.5 million personal files from our research projects that consume

approximately 110GB of storage space. DEDISgen was used to analyze this real

dataset, with a block size of 4KB, and to generate a custom input distribution for

DEDISbench. In this dataset, approximately 76% of the blocks do not have any

duplicate, while 18% of the blocks are duplicated and can be eliminated. The re-

maining 6% belongs to unique blocks that have duplicated content. This is why

IOzone block size was chosen to be 16KB, allowing us to define that each block

would have 25% of its data (4KB) duplicated among distinct process files. With

this configuration and using 4 independent files, each block of 16KB as a distinct

4KB region with three duplicates, one for each file, which resembles the average

number of 2.76 duplicates per block found in our research group dataset and gen-

erates 18.5% of duplicated blocks that can be eliminated. The remaining 75% of

the blocks are not duplicated.

IOzone allows defining both intra and inter-file duplicates, for example, it

would be possible to define that a block region is only duplicated in the same

file, which would generate few regions with several duplicates in our experimental

setup. Nevertheless, this would increase greatly the block size and the complexity

of the configuration to achieve a similar distribution to the real dataset and, even

with these modifications, the level of detail would still be limited when compared

to DEDISbench. In IOzone one could simulate two or three distinct types of blocks

with a distinct proportion of duplicates while in DEDISbench it is possible to sim-

ulate as many types as specified in the input distribution file.

3.2 Duplicates Distribution

Before running the benchmarks on deduplication systems, we analyzed the content

generated by each benchmark. The results discussed in this section were extracted

with DEDISgen that processed the files generated by each benchmark after com-

pleting a sequential disk I/O write test. We choose the sequential I/O test over a

random test because there are no block rewrites, enabling the extraction of precise

information about all the written blocks and their contents.

Figure 3 presents the percentage of unique blocks with a certain range of du-

plicates (i.e. equal to 0, between 1 and 5, 5 and 10, 10 and 50 and so on) for

Bonnie++, IOzone, DEDISbench and the distribution extracted from our research

group dataset. All the distinct blocks generated by Bonnie++ have between 1 and

5 duplicates, in fact, each unique block has precisely 3 duplicates because every

file is written with the exact same content, meaning that, all blocks in the same file

3 EVALUATION 8

are distinct but are duplicated among the other files. Consequently, as shown in

Table 1, with Bonnie++ 75% of the written space can be deduplicated which may

introduce a significant load in the deduplication, copy-on-write and garbage col-

lection engines. Note that, Figure 3 shows the number of duplicates generated for

each unique block written by the benchmarks while Table 1 shows the percentage

of unique blocks without any duplicate, with duplicates and the percentage of du-

plicated blocks for all the blocks written by the benchmarks, thus explaining why

the percentages differ.

The results for IOzone in Figure 3 show that most unique blocks do not have

any duplicate, while the remaining blocks have mainly between 1 and 5 duplicates

and a very small percentage has between 5 and 10. In fact, the remaining distinct

blocks should have 3 duplicates each, which happens for almost all the blocks with

the exception of 216 blocks that have only 1 duplicate and 3 blocks that have 7

duplicates. If the content of unique blocks is generated randomly, it is possible to

have these collisions, which are not significant for the number of 4KB blocks found

in the 8GB written by the I/O tests. In Table 1, IOzone percentage of duplicates

and unique blocks is closer to the percentages found at the real distribution.

The results of DEDISbench, in Figure 3, show that the number of unique blocks

and their duplicates is distributed over several regions, which is more realistic when

compared to the real distribution. DEDISbench generates most blocks with few du-

plicates and a small percentage of blocks with many duplicates. In fact, we omitted

one value from the figure in the far end of the distribution tail, for legibility reasons,

where a single block has 15665 duplicates. As depicted in this figure, DEDISbench

distribution is much closer to a real dataset which may impact the performance of

deduplication systems. For example, having many blocks with few duplicates will

increase the number of shared blocks that, after being rewritten, must be collected

by the garbage collection algorithm. On the other hand, mixing blocks with dif-

ferent number of duplicates will also affect the size of metadata structures and the

work performed by the deduplication engine. However, when looking at Table 1

the results are slightly more distant from the real values when compared to IOzone

results. This happens due to the algorithm used by DEDISbench to generate the

cumulative content distribution and due to the dataset where the distribution input

information was extracted from. The size of the real dataset is above 100GB while

the benchmark is only writing 8GB, meaning that many of the duplicated blocks

are being written only once, even if the cumulative distribution has a high proba-

bility for writing these blocks. Figure 4 and Table 2 compare the results of running

DEDISbench sequential write tests for 16 and 32GB (divided by 4 files) and shows

that when the amount of written data is closest to the amount of data in the real

dataset, the distribution generated by DEDISbench also becomes closer to the real

one.

To sum up, these results show that both Bonnie++ and IOzone do not simulate

accurately the distribution of duplicates per unique blocks. This detail can influ-

ence the load in the deduplication and garbage collection mechanisms of the dedu-

plication system. For instance, a block shared by two entities or by one hundred

3 EVALUATION 9

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

[0] [1:5[[5:10[[10:50[[50:100[[100:500[

%
 U

ni
qu

e
B

lo
ck

s

Duplicates

Bonnie++
IOzone

DEDISbench
Real

Figure 3: Distribution of duplicates ranges per distinct blocks for Bonnie++, IO-

zone, DEDISbench and the real dataset.

Table 1: Unique and Duplicated blocks in Bonnie++, IOzone,DEDISbench and the

real dataset.

Bonnie++ IOzone DEDISbench Real

% Unique blocks with 0

duplicates

0 75 90 76

% Unique blocks with

duplicates

25 6 3 6

% Duplicated blocks 75 19 7 18

determines the timing when garbage collection is needed, how often the copy-on-

write mechanism must be used and the amount of information in metadata struc-

tures for sharing identical content. In Bonnie++ sharing an excessive amount of

blocks will overload the deduplication engines while in IOzone, having all dupli-

cated blocks with 3 or 4 distinct duplicates may also not be realistic and influence

the evaluation.

3.3 I/O Accesses Distribution

Another contribution of DEDISbench is the introduction of the NURand hotspot

distribution besides the traditional sequential and random uniform disk access pat-

terns, used in Bonnie++ and IOzone. We ran DEDISbench with the three access

distributions: sequential, random uniform and NURand, and extracted the access

patterns of each distribution. Only DEDISbench was used in these tests because

extracting this information from IOzone and Bonnie++ would require modifying

their source code. Moreover, DEDISbench sequential and random uniform distri-

butions mimic the ones found in these two benchmarks.

Figure 5 presents the percentage of blocks for a certain range of accesses. In

3 EVALUATION 10

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

[0] [1:5[[5:10[[10:50[[50:100[[100:500[

%
 U

ni
qu

e
B

lo
ck

s

Duplicates

DEDISbench
DEDISbench16
DEDISbench32

OriginalDist

Figure 4: Distribution of duplicates ranges per distinct blocks for DEDISbench

tests of 8,16 and 32 GB and for the Real dataset.

Table 2: Unique and duplicated blocks in DEDISbench datasets with 8,16 and 32

GB and in the Real dataset.

DEDISbench 8 DEDISbench 16 DEDISbench 32 Real

% Unique blocks with 0

duplicates

90 87 83 76

% Unique blocks with

duplicates

3 4 5 6

% Duplicated blocks 7 8 12 18

the sequential distribution 100% of the blocks are accessed precisely once (range

between 1 and 5 in the figure) while in the random uniform distribution most of

the blocks are accessed between 1 and 5 times, in fact most blocks are accessed

only once and the percentage of blocks decreases with the number of accesses. On

the other hand, the NURand distribution shows that a high percentage of blocks is

accessed few times while a small percentage is accessed many times, generating

blocks that are hotspots (i.e. a few blocks are accessed more than 500 times).

These results show that, with the NURand distribution, it is possible to cre-

ate hotspots for I/O requests, thus generating blocks that are constantly being ac-

cessed, which for deduplication systems means blocks that are constantly being

shared, copied-on-write and garbage collected. Such environment may be more

appropriate for evaluating deduplication systems where some data is accessed fre-

quently and most data is only accessed sporadically, which is not contemplated in

sequential and random uniform distributions.

3 EVALUATION 11

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

[1:5[[5:10[[10:50[[50:100[[100:500[[500:1000[

%
 B

lo
ck

s

Accesses

NURand
Uniform

Sequential

Figure 5: Distribution of accesses per block for Sequential, Random Uniform and

NURand approaches.

3.4 I/O Performance Evaluation

After comparing the content and access distributions of DEDISbench, IOzone and

Bonnie++, we have analyzed how these benchmarks evaluate two distinct dedupli-

cation systems.

LessFS [11] is an open source single-host deduplication file-system designed

mainly for backup purposes but that can also be used for storing VM images and

active data with moderate performance. LessFS uses FUSE for implementing file-

system semantics and only supports in-line deduplication. Data is stored as chunks

with a fixed size of 4KB.

Opendedup [15] is an open-source deduplication file system that supports sin-

gle and multi-host deduplication. Deduplication can be performed in-line or in

batch (off-band) mode, where data is shared in an asynchronous fashion only after

being stored. Opendedup file-system is based on FUSE to export common file sys-

tem primitives and uses Java for the deduplication engine. Data is stored as chunks

and the block size can be parametrizable.

These two systems were chosen because they are open-source systems in a

mature development and export file systems supporting data modification, unlike

in most backup deduplication systems, which is needed for testing the impact of

copy-on-write and garbage collection mechanisms. The three benchmarks also ran

on Ext4, a traditional file system without deduplication. All the file systems were

mounted in the same partition, with a size of 20GB, that was formatted before

running each benchmark. Also, all the deduplication file systems were configured

to have a block size of 4KB and perform deduplication in-line. By performing

in-line deduplication, data is shared immediately and the consequent overheads are

also visible immediately, which would not be possible in batch mode deduplication.

3 EVALUATION 12

Table 3: Evaluation of Ext4, LessFS and Opendedup with Bonnie++.

Ext4 Lessfs Opendedup

Sequential byte write (KB/s) 1100 76 56

Sequential block write (KB/s) 72035 13860 155496

Sequential block rewrite (KB/s) 17319 1016 62744

Sequential byte read (KB/s) 3029 1262 72

Sequential block read (KB/s) 73952 60064 144614

Urandom seek (KB/s) 170.9 127.1 115.8

Table 4: CPU and RAM consumption of LessFS and Opendedup for Bonnie++,

IOzone and DEDISbench.

LessFS Opendedup

Bonnie++
CPU 22 % 163 %

RAM 2.2 GB 1.8 GB

IOzone
CPU 9 % 25 %

RAM 1.25 GB 2.1 GB

DEDISbench
CPU 15.7 19.5 %

RAM 2.2 GB 1.9 GB

In Bonnie++ the tests were performed in the following order, which cannot

be changed: single-byte write, block write and block rewrite in sequential mode,

single-byte read and block read in sequential mode and, finally, the random seek

test. For IOzone and DEDISbench we choose the tests order to be as similar as pos-

sible to Bonnie++. In IOzone the order was: Block write, block rewrite, block read

and block reread in sequential mode and block read and block re-read in random

uniform mode. For DEDISbench the order was exactly the same as in IOzone but

we introduced two more tests before ending the benchmark that were the block read

and block write with the NURand distribution. Finally, we do not compare directly

the results of different benchmarks since each benchmark has different implemen-

tations for calculating throughput rates. Instead, we analyze each benchmark in-

dependently and compare the overhead of Opendedup and LessFS deduplication

filesystems over Ext4 fylesystem that does not perform any deduplication.

Table 3 shows the results of running Bonnie++ on Ext4, LessFS and Opend-

edup. By comparing the deduplication systems with Ext4 it is possible to conclude

that writing sequentially one byte at a time is inefficient because, for each written

byte, a block of 4KB will be modified and will be shared by the deduplication sys-

tem, thus forcing the deduplication system to process a single block 4096 times.

This is also true for sequential byte reads where, in each operation, it must be

made an access to the metadata that tracks the stored blocks for retrieving a sin-

gle byte. In this last test, the overhead introduced by Opendedup, when compared

to LessFS overhead, is considerably higher and can be caused by retrieving the

whole block to memory in each byte read operation instead of taking advantage of

3 EVALUATION 13

Table 5: Evaluation of Ext4, LessFS and Opendedup with IOzone.

Ext4 Lessfs Opendedup

Sequential block write (KB/s) 74463 5525,24 19760,8

Sequential block rewrite (KB/s) 74356,88 373,28 29924,84

Sequential block read (KB/s) 67159,36 7777,48 10464,4

Sequential block reread (KB/s) 67522,48 11495,48 10403,72

Urandom block read (KB/s) 2086,4 1304,08 1766,24

Urandom block write (KB/s) 2564,76 162,4 1608,04

a caching mechanism. In sequential block write and rewrite Opendedup outper-

forms Ext4 by taking advantage of Bonnie++ writing the same content in all tests.

Data written in sequential byte tests was already shared and Opendedup algorithm

only requires consulting the in-memory metadata for finding duplicated content

and sharing it, thus avoiding the need of actually writing the new blocks to disk.

On the other hand, LessFS implementation does not seem to take advantage of

such scenario. Opendedup also outperforms Ext4 in sequential block reads prob-

ably with a cache mechanism, efficient only at the block granularity. Finally, in

random seek tests both deduplication systems present worse results that Ext4, with

LessFS slightly outperforming Opendedup. RAM and CPU usages while Bon-

nie++ was running are depicted in Table 4. Both Opendedup and LessFS consume

a significant amount of RAM, meaning that most metadata is loaded in memory and

explaining, for example, the performance boosts of Opendedup in sequential block

read and write tests. Moreover, the increase in CPU consumption with Opendedup

can be a consequence of Bonnie++ writing a high percentage of duplicated content,

thus generating an unrealistic amount of duplicated data to be processed.

Table 5 shows the results of running IOzone on Ext4, LessFS and Opend-

edup. Unlike Bonnie++, this benchmark does not write always the same content

explaining why Opendedup does not outperforms Ext4 in block rewrite operations.

Although some of the data was shared already, the content written is not always

the same and most requests are still written to disk. With IOzone, Opendedup out-

performs LessFS in almost all tests with the exception of block re-read test where

LessFS is slightly better. LessFS decrease in performance is more visible in se-

quential and random write tests and mainly in re-write tests. In Table 4, the RAM

and CPU usages drop significantly which can be a consequence of writing less du-

plicated content. The RAM usage in Opendedup is an exception and the value is

higher than in Bonnie++ tests.

Table 6 shows the results of running DEDISbench on Ext4, LessFS and Opend-

edup. As explained previously, IOzone generates all duplicated blocks with exactly

3 duplicates while DEDISbench uses a realistic distribution where most blocks

have few duplicates but some blocks are highly duplicated, which will help ex-

plaining the next results. In sequential tests both Opendedup and LessFS are out-

performed by Ext4, as in IOzone evaluation. However, the results of Opendedup

3 EVALUATION 14

Table 6: Evaluation of Ext4, LessFS and Opendedup with DEDISbench.

Ext4 Lessfs Opendedup

Sequential block write (KB/s) 86916.82 5025.352 77508.424

Sequential block rewrite (KB/s) 76905.028 658.324 18852.732

Sequential block read (KB/s) 78648.964 7527.196 18591.672

Sequential block reread (KB/s) 78620.46 11788.792 20404.88

Urandom block read (KB/s) 791.356 2055.228 511.62

Urandom block write (KB/s) 1416.016 123,232 n.a.

NURandom block read (KB/s) 2287.208 1829.704 1350,304

NURandom block write (KB/s) 1246.336 151.556 n.a.

for the sequential write test show considerably less overhead when compared to the

same IOzone test, which can be a consequence of DEDISbench generating some

blocks with a large amount of duplicates that will require writing only one copy

to the storage, thus enhancing the performance of Opendedup. On the other hand

in the sequential rewrite tests, Opendedup performance decreases since DEDIS-

bench generates many blocks with few duplicates that will then be rewritten and

will require garbage collection, thus increasing the overhead.

The most interesting results appear in the random I/O tests. Firstly, LessFS

outperforms Ext4 in uniform random block read test, which is an harsh test for

the disk arm movement, pointing one of the advantages of using deduplication. If

two blocks stored in distant disk positions are shared, the shared block will then

point to the same disk offset and a disk arm movement will be spared. In IOzone

there are few duplicates per block and this operations does not occur so often but, in

DEDISbench some blocks have a large number of duplicates which can reduce sig-

nificantly the disk arm movement and consequently improve performance. Even

in Opendedup where this improvement is less visible, the overhead for random

uniform read tests is lower than the one for sequential read tests. With the NU-

Rand hotspot distribution the performance of read operations in Ext4 is leveraged

because caching mechanisms can be used more efficiently, thus the performance

LessFS and Opendedup are reduced but, nevertheless, achieve better performance

than in sequential tests. The CPU and RAM consumptions, shown in Table 4, for

LessFS and Opendedup are similar to the ones obtained with IOzone, with a slight

reduction in Opendedup and increase in LessFS. These variations can be explained

by the design and implementation of each deduplication system and how these

process the distinct generated datasets.

The other interesting results are visible in the uniform and NURand random

write tests. The performance of LessFS when compared to Ext4 decreases signif-

icantly while Opendedup system blocks with a CPU usage of almost 400%, not

being able to complete these tests. Realistic content distribution in DEDISbench

uncovered a problem in Opendedup that could not be detected with simplistic con-

tent distributions in IOzone and Bonnie++. To further prove this point, Table 7

4 RELATED WORK 15

Table 7: Evaluation of Opendedup with DEDISbench and a modified version of

DEDISbench that generates the same content for each written block.

DEDISbench Original DEDISbench Modified

Sequential block write (KB/s) 77508.424 247428,092

Sequential block rewrite (KB/s) 18852.732 253817,508

Sequential block read (KB/s) 18591.672 412694,064

Sequential block reread (KB/s) 20404.88 418169,436

Urandom block read (KB/s) 511.62 106696,336

Urandom block write (KB/s) n.a. 3638,368

NURandom block read (KB/s) 1350,304 73385,616

NURandom block write (KB/s) n.a. 3288,78

% CPU consumption 19 272

RAM consumtion (GB) 2.1 2.6

tests Opendedup with the default DEDISbench and a modified version that writes

always the same content, in each I/O operation, and, as we can see by the results,

Opendedup completes successfully all the tests and greatly increases the perfor-

mance, even when compared to the Ext4 results with the default DEDISbench ver-

sion. However, the drawback of processing a fully duplicated dataset is visible

in the CPU and RAM usage of Opendedup that increase to 272% and 2.6 GB re-

spectively, which can be a serious limitation for deduplication in cloud commodity

servers. Furthermore, these results show that using a realistic content distribution

is necessary for a proper evaluation of deduplication systems and that Opendedup

is not thought for datasets with a higher percentage of non-duplicated data.

This section states that using realistic content and accesses distributions influ-

ences significantly the evaluation of deduplication systems. Moreover, generating

a realistic content distribution is necessary for finding performance issues and sys-

tem design fails, like the ones found in Opendedup, but also for finding deduplica-

tion advantages, such as the boost in performance of uniform random read tests in

LessFS. Moreover, it is useful having a benchmark that can simulate several con-

tent distributions ranging from fully duplicated to fully unique content and, most

importantly, that is able to generate a content distribution where the number of du-

plicates per block is variable and follows a realistic distribution. To our knowledge,

this is only achievable with DEDISbench.

4 Related Work

Despite the extensive research on I/O benchmarking, to our knowledge and as dis-

cussed in previous published work, I/O benchmarks that allow defining content

distributions are vaguely addressed in the literature and are either limited to gener-

ating simplistic distributions [14, 6] or are still preliminary work [18].

A lot like DEDISbench does, IOzone [14] and Bonnie++ [5] test disk I/O per-

4 RELATED WORK 16

formance by performing concurrent sequential and random read and write opera-

tions in several files. Bonnie++ does not allow specifying the content generated for

I/O operations, in fact, it writes the same content in each disk I/O test and for each

file. On the other hand, IOzone allows specifying the percentage of duplicated data

in each record (block). It is possible to subdivide further this duplicate percentage

and detail the amount of this percentage that is duplicated among other records in

the same file (intra-file), among records on distinct files (inter-file) and in both intra

and inter file. In other words, these parameters allow defining the percentage of du-

plicated and non duplicated intra and inter-file content, meaning that, it is possible

to achieve some control over the number of duplicates per record and have differ-

ent regions of a record with a different number of duplicates like in DEDISbench.

However, achieving such distributions can be complex and the level of detail will

never be as realistic as the one provided by DEDISbench. Both IOzone and Bon-

nie++ use either sequential or random uniform distributions for the access pattern

of I/O operations and are only able to perform stress testing. In Bonnie++ and

IOzone, tests are performed at a peak/stress rate and random tests follow an uni-

form random distribution that balances equally the I/O operations per file region.

DEDISbench introduces an hotspot access pattern distribution based on TPC-C

NURand function and allows to perform I/O operations at a nominal throughput,

that may be more realistic settings for most applications. To our knowledge, Bon-

nie++ and IOzone are the closest synthetic micro-benchmarks to DEDISbench in

terms of design principles and evaluation parameters, which is why we compare

our benchmark directly with both in Section 3.

Other work, with different assumptions from DEDISbench, IOzone and Bon-

nie++, leverages the simulation of actual file systems by generating directory threes

and depth, the amount of files in each directory, distinct file sizes and multiple op-

erations on files and directories. Most of these benchmarks use probabilistic dis-

tributions for building filesystem trees, choosing the operations to execute and the

targets of each operation [3, 1, 9, 6, 18]. Fstress [3] presents several workloads with

different distributions (e.g. peer-to-peer, mail and news servers) that run with a pre-

defined nominal load like in DEDISbench. Moreover, Fstress also uses an hotspot

probabilistic distribution for assigning operations to distinct files. Postmark [9] is

designed to evaluate the performance of creating, appending, reading and delet-

ing small files, simulating the characteristic workloads found in mail, news and

web-based commerce servers. Target files and sizes are choosen by following an

uniform distribution. Agrawal et all [1] work uses distinct probability models for

creating new directories and files, for choosing the depth and number of files in

each directory and for choosing the size and the access patterns to distinct files.

However, none of these benchmarks allows specifying the content to be written,

using instead a random or a constant pattern.

Filebench [6, 2] uses an entropy based approach for generating data with dis-

tinct content, for each I/O operation, that allows controlling the compression and

duplication ratio of a dataset. Like in IOzone, this approach allows simulating

the amount of duplicated data in a specific dataset but does not allow detailing

5 CONCLUSION 17

further the distribution like in DEDISbench. Furthermore, we could not find the

implementation details of this feature in the current version of Filebench. Tarasov

et al. [18] preliminary work presents a framework for generating data content and

metadata evolution in a controllable way. Their algorithm builds a base image

with pre-defined directories and files and then uses a Markov model to perform

file-level changes and multi-dimensional statistics to perform in-file changes that

result in mutations of the base image. Metadata and data changes are loaded from

pre-computed profiles. extracted from public and private data of different web

servers, e-mail servers and version control repositories. This is still preliminary

work, thus lacking details about the generation and loading of the duplicates distri-

bution that is neither detailed nor evaluated. Despite the different aims of DEDIS-

bench and these filesystem benchmarks, our content generation algorithm is still

different from the ones found in these systems and could be incorporated, with

some design and implementation modifications, in any of these benchmarks.

To sum up, most I/O benchmarks do not support the generation of duplicated

content writing either random or constant data patterns. To our knowledge, IO-

zone, Filebench and Tarasov et all [18] are the only I/O benchmarks that support

such feature but, when compared with DEDISbench, these benchmarks use differ-

ent algorithms for generating duplicated content that are lacking design and imple-

mentation details or limiting the realism of the generated distributions.

5 Conclusion

This paper presents DEDISbench, a synthetic disk I/O micro-benchmark designed

for evaluating deduplication systems. As the main contribution, DEDISbench can

process metadata extracted from real datasets and use it to generate realistic con-

tent for I/O write operations. Existing I/O benchmarks, either do not focus on

distinct content generation or generate limited distributions that, in most cases, do

not simulate accurately a real dataset. We also introduce DEDISgen, a tool for an-

alyzing real datasets and extracting the necessary metadata to be used as input by

DEDISbench for generating realistic content distributions.

As other contributions, DEDISbench introduces an hotspot distribution, based

on TPC-C NURand function, that generates a random access pattern for I/O oper-

ations where few blocks are hotspots and the remaining blocks are accessed spo-

radically. This simulates, for many applications, a more realistic pattern than the

traditional random uniform one. Finally, DEDISbench can also perform I/O tests

with stress and nominal intensities.

The comparison of DEDISbench with IOzone and Bonnie++ shows that DEDIS-

bench simulates more accurately a real content distribution, allowing to specify in

detail the proportion of duplicates per unique block. This increased accuracy was

key for finding new performance advantages and drawbacks and also system is-

sues in two deduplication file systems, LessFS and Opendedup, evaluated with the

three benchmarks and compared to Ext4, a file system without deduplication. In

6 AVAILABILITY 18

fact, DEDISbench realistic content distribution uncovered an important limitation

in Opendedup implementation. Finally, DEDISbench hotspot access distribution

allowed evaluating the performance of random disk accesses, in each system, while

maintaining some cache performance, which is not possible with the random uni-

form distribution, used by Bonnie++ and IOzone.

To conclude, DEDISbench is, to our knowledge, the only disk I/O micro-

benchmark that simulates content distributions, extracted from distinct real datasets,

with a level of detail that allows evaluating accurately deduplication systems.

6 Availability

DEDISbench documentation, source code and debian packages are available at:

http://www.holeycow.org/Home/dedisbench.

7 Acknowledgments

This work is funded by ERDF - European Regional Development Fund through

the COMPETE Programme (operational programme for competitiveness) and by

National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Por-

tuguese Foundation for Science and Technology) within project RED FCOMP-01-

0124-FEDER-010156 and FCT by Ph.D scholarship SFRH-BD-71372-2010.

References

[1] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Generating realistic impressions for file-system benchmarking. In Conference

on File and Storage Technologies, 2009.

[2] Rami Al-Rfou, Nikhil Patwardhan, and Phanindra Bhagavatula. Deduplica-

tion and compression benchmarking in filebench. Technical report, 2010.

[3] Darrell Anderson. Fstress: A flexible network file service benchmark. Tech-

nical report, 2002.

[4] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. Decen-

tralized deduplication in san cluster file systems. In USENIX Annual Techni-

cal Conference, 2009.

[5] Russell Coker. Bonnie++ web page. http://www.coker.com.au/

bonnie++/. May 2012.

[6] Filebench. Filebench web page. http://filebench.sourceforge.

net. May 2012.

REFERENCES 19

[7] Gregory R. Ganger and John Wilkes. A study of practical deduplication. In

Conference on File and Storage Technologies, 2011.

[8] White paper - complete storage and data protection architecture for vmware

vsphere. Technical report, 2011.

[9] Jeffrey Katcher. Postmark: a new file system benchmark. Technical report,

1997.

[10] Ricardo Koller and Raju Rangaswami. I/o deduplication: utilizing content

similarity to improve i/o performance. In Conference on File and Storage

Technologies, 2010.

[11] Lessfs. Lessfs web page. http://www.lessfs.com/wordpress/.

May 2012.

[12] Athicha Muthitacharoen, Benjie Chen, David Mazieres, and David Mazi

Eres. A low-bandwidth network file system. In Symposium on Operating

Systems Principles, 2001.

[13] Partho Nath, Michael A. Kozuch, David R. Ohallaron, Jan Harkes, M. Satya-

narayanan, Niraj Tolia, and Matt Toups. Design tradeoffs in applying content

addressable storage to enterprise-scale systems based on virtual machines. In

USENIX Annual Technical Conference, 2006.

[14] William D. Norcott. Iozone web page. http://www.iozone.org/.

May 2012.

[15] Opendedup. Opendedup web page. http://opendedup.org. May

2012.

[16] João Paulo. Efficient storage of data in cloud computing. Master’s thesis,

2009.

[17] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage.

In Conference on File and Storage Technologies, 2002.

[18] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuenning,

and Erez Zadok. Generating realistic datasets for deduplication analysis. In

USENIX Annual Technical Conference. Poster Session, 2012.

[19] Transaction processing performance council. TPC-C standard specification,

revision 5.5. http://www.tpc.org/tpcc/spec/tpcc_current.

pdf.

[20] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in

the data domain deduplication file system. In Conference on File and Storage

Technologies, 2008.

